課程信息

1,609,096 次近期查看

學生職業成果

41%

完成這些課程後已開始新的職業生涯

37%

通過此課程獲得實實在在的工作福利

12%

加薪或升職
可分享的證書
完成後獲得證書
100% 在線
立即開始,按照自己的計劃學習。
第 2 門課程(共 5 門)
可靈活調整截止日期
根據您的日程表重置截止日期。
初級
完成時間大約為18 小時
英語(English)
字幕:中文(繁體), 中文(簡體), 巴西葡萄牙語, 韓語, 土耳其語(Turkish), 英語(English), 西班牙語(Spanish)...

您將獲得的技能

HyperparameterTensorflowHyperparameter OptimizationDeep Learning

學生職業成果

41%

完成這些課程後已開始新的職業生涯

37%

通過此課程獲得實實在在的工作福利

12%

加薪或升職
可分享的證書
完成後獲得證書
100% 在線
立即開始,按照自己的計劃學習。
第 2 門課程(共 5 門)
可靈活調整截止日期
根據您的日程表重置截止日期。
初級
完成時間大約為18 小時
英語(English)
字幕:中文(繁體), 中文(簡體), 巴西葡萄牙語, 韓語, 土耳其語(Turkish), 英語(English), 西班牙語(Spanish)...

提供方

deeplearning.ai 徽標

deeplearning.ai

教學大綱 - 您將從這門課程中學到什麼

內容評分Thumbs Up96%(45,939 個評分)Info
1

1

完成時間為 8 小時

Practical aspects of Deep Learning

完成時間為 8 小時
15 個視頻 (總計 131 分鐘), 3 個閱讀材料, 4 個測驗
15 個視頻
Bias / Variance8分鐘
Basic Recipe for Machine Learning6分鐘
Regularization9分鐘
Why regularization reduces overfitting?7分鐘
Dropout Regularization9分鐘
Understanding Dropout7分鐘
Other regularization methods8分鐘
Normalizing inputs5分鐘
Vanishing / Exploding gradients6分鐘
Weight Initialization for Deep Networks6分鐘
Numerical approximation of gradients6分鐘
Gradient checking6分鐘
Gradient Checking Implementation Notes5分鐘
Yoshua Bengio interview25分鐘
3 個閱讀材料
Clarification about Upcoming Regularization Video1分鐘
Clarification about Upcoming Understanding dropout Video1分鐘
Clarification about Upcoming Normalizing Inputs Video1分鐘
1 個練習
Practical aspects of deep learning30分鐘
2

2

完成時間為 5 小時

Optimization algorithms

完成時間為 5 小時
11 個視頻 (總計 92 分鐘), 2 個閱讀材料, 2 個測驗
11 個視頻
Understanding mini-batch gradient descent11分鐘
Exponentially weighted averages5分鐘
Understanding exponentially weighted averages9分鐘
Bias correction in exponentially weighted averages4分鐘
Gradient descent with momentum9分鐘
RMSprop7分鐘
Adam optimization algorithm7分鐘
Learning rate decay6分鐘
The problem of local optima5分鐘
Yuanqing Lin interview13分鐘
2 個閱讀材料
Clarification about Upcoming Adam Optimization Video1分鐘
Clarification about Learning Rate Decay Video1分鐘
1 個練習
Optimization algorithms30分鐘
3

3

完成時間為 5 小時

Hyperparameter tuning, Batch Normalization and Programming Frameworks

完成時間為 5 小時
11 個視頻 (總計 104 分鐘), 2 個閱讀材料, 2 個測驗
11 個視頻
Using an appropriate scale to pick hyperparameters8分鐘
Hyperparameters tuning in practice: Pandas vs. Caviar6分鐘
Normalizing activations in a network8分鐘
Fitting Batch Norm into a neural network12分鐘
Why does Batch Norm work?11分鐘
Batch Norm at test time5分鐘
Softmax Regression11分鐘
Training a softmax classifier10分鐘
Deep learning frameworks4分鐘
TensorFlow16分鐘
2 個閱讀材料
Clarifications about Upcoming Softmax Video1分鐘
Note about TensorFlow 1 and TensorFlow 210分鐘
1 個練習
Hyperparameter tuning, Batch Normalization, Programming Frameworks30分鐘

審閱

來自IMPROVING DEEP NEURAL NETWORKS: HYPERPARAMETER TUNING, REGULARIZATION AND OPTIMIZATION的熱門評論

查看所有評論

關於 深度学习 專項課程

If you want to break into AI, this Specialization will help you do so. Deep Learning is one of the most highly sought after skills in tech. We will help you become good at Deep Learning. In five courses, you will learn the foundations of Deep Learning, understand how to build neural networks, and learn how to lead successful machine learning projects. You will learn about Convolutional networks, RNNs, LSTM, Adam, Dropout, BatchNorm, Xavier/He initialization, and more. You will work on case studies from healthcare, autonomous driving, sign language reading, music generation, and natural language processing. You will master not only the theory, but also see how it is applied in industry. You will practice all these ideas in Python and in TensorFlow, which we will teach. You will also hear from many top leaders in Deep Learning, who will share with you their personal stories and give you career advice. AI is transforming multiple industries. After finishing this specialization, you will likely find creative ways to apply it to your work. We will help you master Deep Learning, understand how to apply it, and build a career in AI....
深度学习

常見問題

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.

    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.

  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

還有其他問題嗎?請訪問 學生幫助中心