課程信息
4.8
20,674 個評分
2,365 個審閱
專項課程

第 3 門課程(共 5 門),位於

100% online

100% online

立即開始,按照自己的計劃學習。
可靈活調整截止日期

可靈活調整截止日期

根據您的日程表重置截止日期。
初級

初級

完成時間(小時)

完成時間大約為7 小時

建議:2 weeks of study, 3-4 hours/week...
可選語言

英語(English)

字幕:英語(English), 中文(繁體), 中文(簡體), 韓語, 土耳其語(Turkish)...

您將獲得的技能

Machine LearningDeep LearningInductive TransferMulti-Task Learning
專項課程

第 3 門課程(共 5 門),位於

100% online

100% online

立即開始,按照自己的計劃學習。
可靈活調整截止日期

可靈活調整截止日期

根據您的日程表重置截止日期。
初級

初級

完成時間(小時)

完成時間大約為7 小時

建議:2 weeks of study, 3-4 hours/week...
可選語言

英語(English)

字幕:英語(English), 中文(繁體), 中文(簡體), 韓語, 土耳其語(Turkish)...

教學大綱 - 您將從這門課程中學到什麼

1
完成時間(小時)
完成時間為 2 小時

ML Strategy (1)

...
Reading
13 個視頻(共 100 分鐘), 1 個閱讀材料, 1 個測驗
Video13 個視頻
Orthogonalization10分鐘
Single number evaluation metric7分鐘
Satisficing and Optimizing metric5分鐘
Train/dev/test distributions6分鐘
Size of the dev and test sets5分鐘
When to change dev/test sets and metrics11分鐘
Why human-level performance?5分鐘
Avoidable bias6分鐘
Understanding human-level performance11分鐘
Surpassing human-level performance6分鐘
Improving your model performance4分鐘
Andrej Karpathy interview15分鐘
Reading1 個閱讀材料
Machine Learning flight simulator2分鐘
Quiz1 個練習
Bird recognition in the city of Peacetopia (case study)45分鐘
2
完成時間(小時)
完成時間為 3 小時

ML Strategy (2)

...
Reading
11 個視頻(共 132 分鐘), 1 個測驗
Video11 個視頻
Cleaning up incorrectly labeled data13分鐘
Build your first system quickly, then iterate6分鐘
Training and testing on different distributions10分鐘
Bias and Variance with mismatched data distributions18分鐘
Addressing data mismatch10分鐘
Transfer learning11分鐘
Multi-task learning12分鐘
What is end-to-end deep learning?11分鐘
Whether to use end-to-end deep learning10分鐘
Ruslan Salakhutdinov interview17分鐘
Quiz1 個練習
Autonomous driving (case study)45分鐘
4.8
職業方向

35%

完成這些課程後已開始新的職業生涯
工作福利

83%

通過此課程獲得實實在在的工作福利
職業晉升

14%

加薪或升職

熱門審閱

創建者 AMNov 23rd 2017

I learned so many things in this module. I learned that how to do error analysys and different kind of the learning techniques. Thanks Professor Andrew Ng to provide such a valuable and updated stuff.

創建者 NINov 11th 2017

Awesome course as always. The course teaches real world practical aspects of how to get started and navigate in the real world projects. The guidelines are actual learnings from years of experience.

講師

Avatar

Andrew Ng

Co-founder, Coursera; Adjunct Professor, Stanford University; formerly head of Baidu AI Group/Google Brain
Avatar

Head Teaching Assistant - Kian Katanforoosh

Lecturer of Computer Science at Stanford University, deeplearning.ai, Ecole CentraleSupelec
Avatar

Teaching Assistant - Younes Bensouda Mourri

Mathematical & Computational Sciences, Stanford University, deeplearning.ai

關於 deeplearning.ai

deeplearning.ai is Andrew Ng's new venture which amongst others, strives for providing comprehensive AI education beyond borders....

關於 Deep Learning 專項課程

If you want to break into AI, this Specialization will help you do so. Deep Learning is one of the most highly sought after skills in tech. We will help you become good at Deep Learning. In five courses, you will learn the foundations of Deep Learning, understand how to build neural networks, and learn how to lead successful machine learning projects. You will learn about Convolutional networks, RNNs, LSTM, Adam, Dropout, BatchNorm, Xavier/He initialization, and more. You will work on case studies from healthcare, autonomous driving, sign language reading, music generation, and natural language processing. You will master not only the theory, but also see how it is applied in industry. You will practice all these ideas in Python and in TensorFlow, which we will teach. You will also hear from many top leaders in Deep Learning, who will share with you their personal stories and give you career advice. AI is transforming multiple industries. After finishing this specialization, you will likely find creative ways to apply it to your work. We will help you master Deep Learning, understand how to apply it, and build a career in AI....
Deep Learning

常見問題

  • 注册以便获得证书后,您将有权访问所有视频、测验和编程作业(如果适用)。只有在您的班次开课之后,才可以提交和审阅同学互评作业。如果您选择在不购买的情况下浏览课程,可能无法访问某些作业。

  • 您注册课程后,将有权访问专项课程中的所有课程,并且会在完成课程后获得证书。您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容,可以免费旁听课程。

還有其他問題嗎?請訪問 學生幫助中心