- Artificial Neural Network
- Convolutional Neural Network
- Tensorflow
- Recurrent Neural Network
- Transformers
- Deep Learning
- Backpropagation
- Python Programming
- Neural Network Architecture
- Mathematical Optimization
- hyperparameter tuning
- Inductive Transfer
深度学习 專項課程
Become a Machine Learning expert. Master the fundamentals of deep learning and break into AI. Recently updated with cutting-edge techniques!
提供方


您將學到的內容有
Build and train deep neural networks, identify key architecture parameters, implement vectorized neural networks and deep learning to applications
Train test sets, analyze variance for DL applications, use standard techniques and optimization algorithms, and build neural networks in TensorFlow
Build a CNN and apply it to detection and recognition tasks, use neural style transfer to generate art, and apply algorithms to image and video data
Build and train RNNs, work with NLP and Word Embeddings, and use HuggingFace tokenizers and transformer models to perform NER and Question Answering
您將獲得的技能
關於此 專項課程
應用的學習項目
By the end you’ll be able to
• Build and train deep neural networks, implement vectorized neural networks, identify architecture parameters, and apply DL to your applications
• Use best practices to train and develop test sets and analyze bias/variance for building DL applications, use standard NN techniques, apply optimization algorithms, and implement a neural network in TensorFlow
• Use strategies for reducing errors in ML systems, understand complex ML settings, and apply end-to-end, transfer, and multi-task learning
• Build a Convolutional Neural Network, apply it to visual detection and recognition tasks, use neural style transfer to generate art, and apply these algorithms to image, video, and other 2D/3D data
• Build and train Recurrent Neural Networks and its variants (GRUs, LSTMs), apply RNNs to character-level language modeling, work with NLP and Word Embeddings, and use HuggingFace tokenizers and transformers to perform Named Entity Recognition and Question Answering
- Intermediate Python skills: basic programming, understanding of for loops, if/else statements, data structures
- A basic grasp of linear algebra & ML
- Intermediate Python skills: basic programming, understanding of for loops, if/else statements, data structures
- A basic grasp of linear algebra & ML
專項課程的運作方式
加入課程
Coursera 專項課程是幫助您掌握一門技能的一系列課程。若要開始學習,請直接註冊專項課程,或預覽專項課程並選擇您要首先開始學習的課程。當您訂閱專項課程的部分課程時,您將自動訂閱整個專項課程。您可以只完成一門課程,您可以隨時暫停學習或結束訂閱。訪問您的學生面板,跟踪您的課程註冊情況和進度。
實踐項目
每個專項課程都包括實踐項目。您需要成功完成這個(些)項目才能完成專項課程並獲得證書。如果專項課程中包括單獨的實踐項目課程,則需要在開始之前完成其他所有課程。
獲得證書
在結束每門課程並完成實踐項目之後,您會獲得一個證書,您可以向您的潛在雇主展示該證書並在您的職業社交網絡中分享。

此專項課程包含 5 門課程
神经网络与深度学习
In the first course of the Deep Learning Specialization, you will study the foundational concept of neural networks and deep learning.
Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization
In the second course of the Deep Learning Specialization, you will open the deep learning black box to understand the processes that drive performance and generate good results systematically.
Structuring Machine Learning Projects
In the third course of the Deep Learning Specialization, you will learn how to build a successful machine learning project and get to practice decision-making as a machine learning project leader.
Convolutional Neural Networks
In the fourth course of the Deep Learning Specialization, you will understand how computer vision has evolved and become familiar with its exciting applications such as autonomous driving, face recognition, reading radiology images, and more.
提供方

deeplearning.ai
DeepLearning.AI is an education technology company that develops a global community of AI talent.
常見問題
退款政策是如何规定的?
我可以只注册一门课程吗?
有助学金吗?
我可以免费学习课程吗?
此课程是 100% 在线学习吗?是否需要现场参加课程?
完成专项课程后我会获得大学学分吗?
What is Deep Learning? Why is it relevant?
What is the Deep Learning Specialization about?
What will I be able to do after completing the Deep Learning Specialization?
What background knowledge is necessary for the Deep Learning Specialization?
Who is the Deep Learning Specialization for?
How long does it take to complete the Deep Learning Specialization?
Who is the Deep Learning Specialization by?
Is this a standalone course or a Specialization?
Do I need to take the courses in a specific order?
Can I apply for financial aid?
Can I audit the Deep Learning Specialization?
How do I get a receipt to get this reimbursed by my employer?
I want to purchase this Specialization for my employees! How can I do that?
The Deep Learning Specialization was updated in April 2021. What is different in the new version?
I’m currently enrolled in one or more courses in the Deep Learning Specialization. What does this mean for me?
I’ve already completed one or more courses in the Deep Learning Specialization but don’t have an active subscription. What does this mean for me?
還有其他問題嗎?請訪問 學生幫助中心。