課程信息

283,463 次近期查看

學生職業成果

32%

完成這些課程後已開始新的職業生涯

34%

通過此課程獲得實實在在的工作福利
可分享的證書
完成後獲得證書
100% 在線
立即開始,按照自己的計劃學習。
第 4 門課程(共 5 門)
可靈活調整截止日期
根據您的日程表重置截止日期。
中級
完成時間大約為26 小時
英語(English)
字幕:英語(English), 韓語

您將學到的內容有

  • Understand how text is handled in Python

  • Apply basic natural language processing methods

  • Write code that groups documents by topic

  • Describe the nltk framework for manipulating text

您將獲得的技能

Natural Language Toolkit (NLTK)Text MiningPython ProgrammingNatural Language Processing

學生職業成果

32%

完成這些課程後已開始新的職業生涯

34%

通過此課程獲得實實在在的工作福利
可分享的證書
完成後獲得證書
100% 在線
立即開始,按照自己的計劃學習。
第 4 門課程(共 5 門)
可靈活調整截止日期
根據您的日程表重置截止日期。
中級
完成時間大約為26 小時
英語(English)
字幕:英語(English), 韓語

提供方

密歇根大学 徽標

密歇根大学

教學大綱 - 您將從這門課程中學到什麼

內容評分Thumbs Up92%(4,676 個評分)Info
1

1

完成時間為 8 小時

Module 1: Working with Text in Python

完成時間為 8 小時
5 個視頻 (總計 56 分鐘), 4 個閱讀材料, 3 個測驗
5 個視頻
Handling Text in Python18分鐘
Regular Expressions16分鐘
Demonstration: Regex with Pandas and Named Groups5分鐘
Internationalization and Issues with Non-ASCII Characters12分鐘
4 個閱讀材料
Course Syllabus10分鐘
Help us learn more about you!10分鐘
Notice for Auditing Learners: Assignment Submission10分鐘
Resources: Common issues with free text10分鐘
2 個練習
Practice Quiz8分鐘
Module 1 Quiz12分鐘
2

2

完成時間為 6 小時

Module 2: Basic Natural Language Processing

完成時間為 6 小時
3 個視頻 (總計 36 分鐘)
3 個視頻
Basic NLP tasks with NLTK16分鐘
Advanced NLP tasks with NLTK16分鐘
2 個練習
Practice Quiz4分鐘
Module 2 Quiz10分鐘
3

3

完成時間為 7 小時

Module 3: Classification of Text

完成時間為 7 小時
7 個視頻 (總計 94 分鐘)
7 個視頻
Identifying Features from Text8分鐘
Naive Bayes Classifiers19分鐘
Naive Bayes Variations4分鐘
Support Vector Machines24分鐘
Learning Text Classifiers in Python15分鐘
Demonstration: Case Study - Sentiment Analysis9分鐘
1 個練習
Module 3 Quiz14分鐘
4

4

完成時間為 6 小時

Module 4: Topic Modeling

完成時間為 6 小時
4 個視頻 (總計 58 分鐘), 2 個閱讀材料, 3 個測驗
4 個視頻
Topic Modeling8分鐘
Generative Models and LDA13分鐘
Information Extraction18分鐘
2 個閱讀材料
Additional Resources & Readings10分鐘
Post-Course Survey10分鐘
2 個練習
Practice Quiz4分鐘
Module 4 Quiz10分鐘

審閱

來自APPLIED TEXT MINING IN PYTHON的熱門評論

查看所有評論

關於 借助 Python 应用数据科学 專項課程

The 5 courses in this University of Michigan specialization introduce learners to data science through the python programming language. This skills-based specialization is intended for learners who have a basic python or programming background, and want to apply statistical, machine learning, information visualization, text analysis, and social network analysis techniques through popular python toolkits such as pandas, matplotlib, scikit-learn, nltk, and networkx to gain insight into their data. Introduction to Data Science in Python (course 1), Applied Plotting, Charting & Data Representation in Python (course 2), and Applied Machine Learning in Python (course 3) should be taken in order and prior to any other course in the specialization. After completing those, courses 4 and 5 can be taken in any order. All 5 are required to earn a certificate....
借助 Python 应用数据科学

常見問題

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.

    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.

  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

還有其他問題嗎?請訪問 學生幫助中心