課程信息
4.6
2,507 個評分
471 個審閱
專項課程

第 3 門課程(共 5 門),位於

100% 在線

100% 在線

立即開始,按照自己的計劃學習。
可靈活調整截止日期

可靈活調整截止日期

根據您的日程表重置截止日期。
中級

中級

完成時間(小時)

完成時間大約為24 小時

建議:8 hours/week...
可選語言

英語(English)

字幕:英語(English), 韓語...

您將學到的內容有

  • Check

    Build features that meet analysis needs

  • Check

    Create and evaluate data clusters

  • Check

    Describe how machine learning is different than descriptive statistics

  • Check

    Explain different approaches for creating predictive models

您將獲得的技能

Python ProgrammingMachine Learning (ML) AlgorithmsMachine LearningScikit-Learn
專項課程

第 3 門課程(共 5 門),位於

100% 在線

100% 在線

立即開始,按照自己的計劃學習。
可靈活調整截止日期

可靈活調整截止日期

根據您的日程表重置截止日期。
中級

中級

完成時間(小時)

完成時間大約為24 小時

建議:8 hours/week...
可選語言

英語(English)

字幕:英語(English), 韓語...

教學大綱 - 您將從這門課程中學到什麼

1
完成時間(小時)
完成時間為 8 小時

Module 1: Fundamentals of Machine Learning - Intro to SciKit Learn

This module introduces basic machine learning concepts, tasks, and workflow using an example classification problem based on the K-nearest neighbors method, and implemented using the scikit-learn library....
Reading
6 個視頻(共 71 分鐘), 4 個閱讀材料, 2 個測驗
Video6 個視頻
Introduction11分鐘
Key Concepts in Machine Learning13分鐘
Python Tools for Machine Learning4分鐘
An Example Machine Learning Problem12分鐘
Examining the Data9分鐘
K-Nearest Neighbors Classification20分鐘
Reading4 個閱讀材料
Course Syllabus10分鐘
Help us learn more about you!10分鐘
Notice for Auditing Learners: Assignment Submission10分鐘
Zachary Lipton: The Foundations of Algorithmic Bias (optional)30分鐘
Quiz1 個練習
Module 1 Quiz20分鐘
2
完成時間(小時)
完成時間為 9 小時

Module 2: Supervised Machine Learning - Part 1

This module delves into a wider variety of supervised learning methods for both classification and regression, learning about the connection between model complexity and generalization performance, the importance of proper feature scaling, and how to control model complexity by applying techniques like regularization to avoid overfitting. In addition to k-nearest neighbors, this week covers linear regression (least-squares, ridge, lasso, and polynomial regression), logistic regression, support vector machines, the use of cross-validation for model evaluation, and decision trees. ...
Reading
12 個視頻(共 166 分鐘), 2 個閱讀材料, 2 個測驗
Video12 個視頻
Overfitting and Underfitting12分鐘
Supervised Learning: Datasets4分鐘
K-Nearest Neighbors: Classification and Regression13分鐘
Linear Regression: Least-Squares17分鐘
Linear Regression: Ridge, Lasso, and Polynomial Regression19分鐘
Logistic Regression12分鐘
Linear Classifiers: Support Vector Machines13分鐘
Multi-Class Classification6分鐘
Kernelized Support Vector Machines18分鐘
Cross-Validation9分鐘
Decision Trees19分鐘
Reading2 個閱讀材料
A Few Useful Things to Know about Machine Learning10分鐘
Ed Yong: Genetic Test for Autism Refuted (optional)10分鐘
Quiz1 個練習
Module 2 Quiz22分鐘
3
完成時間(小時)
完成時間為 7 小時

Module 3: Evaluation

This module covers evaluation and model selection methods that you can use to help understand and optimize the performance of your machine learning models. ...
Reading
7 個視頻(共 81 分鐘), 1 個閱讀材料, 2 個測驗
Video7 個視頻
Confusion Matrices & Basic Evaluation Metrics12分鐘
Classifier Decision Functions7分鐘
Precision-recall and ROC curves6分鐘
Multi-Class Evaluation13分鐘
Regression Evaluation6分鐘
Model Selection: Optimizing Classifiers for Different Evaluation Metrics13分鐘
Reading1 個閱讀材料
Practical Guide to Controlled Experiments on the Web (optional)10分鐘
Quiz1 個練習
Module 3 Quiz28分鐘
4
完成時間(小時)
完成時間為 10 小時

Module 4: Supervised Machine Learning - Part 2

This module covers more advanced supervised learning methods that include ensembles of trees (random forests, gradient boosted trees), and neural networks (with an optional summary on deep learning). You will also learn about the critical problem of data leakage in machine learning and how to detect and avoid it....
Reading
10 個視頻(共 94 分鐘), 11 個閱讀材料, 2 個測驗
Video10 個視頻
Random Forests11分鐘
Gradient Boosted Decision Trees5分鐘
Neural Networks19分鐘
Deep Learning (Optional)7分鐘
Data Leakage11分鐘
Introduction4分鐘
Dimensionality Reduction and Manifold Learning9分鐘
Clustering14分鐘
Conclusion2分鐘
Reading11 個閱讀材料
Neural Networks Made Easy (optional)10分鐘
Play with Neural Networks: TensorFlow Playground (optional)10分鐘
Deep Learning in a Nutshell: Core Concepts (optional)10分鐘
Assisting Pathologists in Detecting Cancer with Deep Learning (optional)10分鐘
The Treachery of Leakage (optional)10分鐘
Leakage in Data Mining: Formulation, Detection, and Avoidance (optional)10分鐘
Data Leakage Example: The ICML 2013 Whale Challenge (optional)10分鐘
Rules of Machine Learning: Best Practices for ML Engineering (optional)10分鐘
How to Use t-SNE Effectively10分鐘
How Machines Make Sense of Big Data: an Introduction to Clustering Algorithms10分鐘
Post-course Survey10分鐘
Quiz1 個練習
Module 4 Quiz20分鐘
4.6
471 個審閱Chevron Right
職業方向

55%

完成這些課程後已開始新的職業生涯
工作福利

83%

通過此課程獲得實實在在的工作福利

熱門審閱

創建者 FLOct 14th 2017

Very well structured course, and very interesting too! Has made me want to pursue a career in machine learning. I originally just wanted to learn to program, without true goal, now I have one thanks!!

創建者 OASep 9th 2017

This course is ideally designed for understanding, which tools you can use to do machine learning tasks in python. However, for deep understanding ML algorithms you should take more math based courses

講師

Avatar

Kevyn Collins-Thompson

Associate Professor
School of Information

關於 University of Michigan

The mission of the University of Michigan is to serve the people of Michigan and the world through preeminence in creating, communicating, preserving and applying knowledge, art, and academic values, and in developing leaders and citizens who will challenge the present and enrich the future....

關於 Applied Data Science with Python 專項課程

The 5 courses in this University of Michigan specialization introduce learners to data science through the python programming language. This skills-based specialization is intended for learners who have a basic python or programming background, and want to apply statistical, machine learning, information visualization, text analysis, and social network analysis techniques through popular python toolkits such as pandas, matplotlib, scikit-learn, nltk, and networkx to gain insight into their data. Introduction to Data Science in Python (course 1), Applied Plotting, Charting & Data Representation in Python (course 2), and Applied Machine Learning in Python (course 3) should be taken in order and prior to any other course in the specialization. After completing those, courses 4 and 5 can be taken in any order. All 5 are required to earn a certificate....
Applied Data Science with Python

常見問題

  • 注册以便获得证书后,您将有权访问所有视频、测验和编程作业(如果适用)。只有在您的班次开课之后,才可以提交和审阅同学互评作业。如果您选择在不购买的情况下浏览课程,可能无法访问某些作业。

  • 您注册课程后,将有权访问专项课程中的所有课程,并且会在完成课程后获得证书。您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容,可以免费旁听课程。

還有其他問題嗎?請訪問 學生幫助中心