課程信息
315,364 次近期查看

100% 在線

立即開始,按照自己的計劃學習。

可靈活調整截止日期

根據您的日程表重置截止日期。

中級

完成時間大約為13 小時

建議:2 weeks of study, 6-10 hours/week...

英語(English)

字幕:英語(English)

您將學到的內容有

  • Check

    Processing big data at scale for analytics and machine learning

  • Check

    Fundamentals of building new machine learning models

  • Check

    Creating streaming data pipelines and dashboards

您將獲得的技能

TensorflowBigqueryGoogle Cloud PlatformCloud Computing

100% 在線

立即開始,按照自己的計劃學習。

可靈活調整截止日期

根據您的日程表重置截止日期。

中級

完成時間大約為13 小時

建議:2 weeks of study, 6-10 hours/week...

英語(English)

字幕:英語(English)

教學大綱 - 您將從這門課程中學到什麼

1
完成時間為 3 小時

Introduction to the Data and Machine Learning on Google Cloud Platform Specialization .

13 個視頻 (總計 78 分鐘), 2 個閱讀材料, 2 個測驗
13 個視頻
Introduction to Google Cloud Platform3分鐘
Compute Power for Analytic and ML Workloads9分鐘
Demo: Creating a VM on Compute Engine13分鐘
Elastic Storage with Google Cloud Storage5分鐘
Build on Google's Global Network3分鐘
Security: On-premise vs Cloud-native2分鐘
Evolution of Google Cloud Big Data Tools5分鐘
Getting Started with Google Cloud Platform and Qwiklabs3分鐘
Choosing the right approach5分鐘
What you can do with Google Cloud Platform3分鐘
Activity: Explore real customer solution architectures7分鐘
Key roles in a data-driven organization6分鐘
2 個閱讀材料
Google Cloud Public Datasets program10分鐘
Module Resources10分鐘
1 個練習
Module Review5分鐘
完成時間為 2 小時

Recommending Products using Cloud SQL and Spark

8 個視頻 (總計 50 分鐘), 1 個閱讀材料, 2 個測驗
8 個視頻
Introduction to machine learning5分鐘
Challenge: ML for recommending housing rentals8分鐘
Approach: Move from on-premise to Google Cloud Platform9分鐘
Demo: From zero to an Apache Spark job in 10 minutes or less6分鐘
Challenge: Utilizing and tuning on-premise clusters6分鐘
Move storage off-cluster with Google Cloud Storage4分鐘
Lab Intro2分鐘
1 個閱讀材料
Module Resources5分鐘
1 個練習
Module Review15分鐘
完成時間為 3 小時

Predict Visitor Purchases with BigQuery ML

13 個視頻 (總計 74 分鐘), 2 個閱讀材料, 2 個測驗
13 個視頻
Demo: Query 2 billion lines of Github code in less than 30 seconds11分鐘
BigQuery: Fast SQL Engine4分鐘
Demo: Exploring bike share data with SQL11分鐘
Data quality4分鐘
BigQuery managed storage5分鐘
Insights from geographic data2分鐘
Demo: Analyzing lightning strikes with BigQuery GIS7分鐘
Choosing a ML model type for structured data4分鐘
Predicting customer lifetime value5分鐘
BigQueryML: Create models with SQL3分鐘
Phases in ML model lifecycle2分鐘
BigQuery ML: key features walkthrough5分鐘
2 個閱讀材料
Lab Intro10分鐘
Module Resources10分鐘
1 個練習
Module Review4分鐘
2
完成時間為 2 小時

Create Streaming Data Pipelines with Cloud Pub/sub and Cloud Dataflow

8 個視頻 (總計 31 分鐘), 1 個閱讀材料, 2 個測驗
8 個視頻
Message-oriented architectures with Cloud Pub/Sub6分鐘
Designing streaming pipelines with Apache Beam3分鐘
Implementing streaming pipelines on Cloud Dataflow3分鐘
Visualizing insights with Data Studio3分鐘
Creating charts with Data Studio2分鐘
Demo: Data Studio walkthrough7分鐘
Lab Intro1分鐘
1 個閱讀材料
Module Resources10分鐘
1 個練習
Module Review4分鐘
完成時間為 2 小時

Classify Images with Pre-Built Models using Vision API and Cloud AutoML

10 個視頻 (總計 55 分鐘), 2 個閱讀材料, 2 個測驗
10 個視頻
How does ML on unstructured data work?3分鐘
Demo: ML built into Google Photos1分鐘
Comparing approaches to ML2分鐘
Demo: Using ML building blocks7分鐘
Using pre-built AI to create a chatbot4分鐘
Customizing Pre-built models with AutoML7分鐘
Lab Intro22
Building a Custom Model1分鐘
Demo: Text classification done three ways21分鐘
2 個閱讀材料
Additional resources to build custom models10分鐘
Module Resources10分鐘
1 個練習
Module Review
完成時間為 5 分鐘

Summary

1 個視頻 (總計 5 分鐘)
1 個視頻
4.6
1355 個審閱Chevron Right

45%

完成這些課程後已開始新的職業生涯

43%

通過此課程獲得實實在在的工作福利

來自Google Cloud Platform Big Data and Machine Learning Fundamentals的熱門評論

創建者 VSMar 3rd 2019

Overall a good curated course to help understand the GCP offerings and high level architecture of how their offerings fit in the current landscape. Easy to follow along as this was fundamental course.

創建者 ADSep 24th 2019

This course really helped me in understanding exactly 'How the Big data and Machine learning can be used in Cloud' and 'The ease to use it'. Thank you for summing all the fundamentals in this course.

關於 Google 云端平台

We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success....

常見問題

  • 注册以便获得证书后,您将有权访问所有视频、测验和编程作业(如果适用)。只有在您的班次开课之后,才可以提交和审阅同学互评作业。如果您选择在不购买的情况下浏览课程,可能无法访问某些作业。

  • 您注册课程后,将有权访问证书中的所有课程,并且会在完成作业后获得证书。您的电子证书将添加到您的成就页中,您可以通过该页打印证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容,可以免费旁听课程。

  • Before enrolling in this course, participants should have roughly one (1) year of experience with one or more of the following:

    • A common query language such as SQL

    • Extract, transform, load activities

    • Data modeling

    • Machine learning and/or statistics

    • Programming in Python

  • To be eligible for the free trial, you will need:

    - Google account (Google is currently blocked in China)

    - Credit card or bank account

    - Terms of service

    Note: There is a known issue with certain EU countries where individuals are not able to sign up, but you may sign up as "business" status and intend to see a potential economic benefit from the trial. More details at: https://support.google.com/cloud/answer/6090602

    More Google Cloud Platform free trial FAQs are available at: https://cloud.google.com/free-trial/

    For more details on how the free trial works, visit our documentation page: https://cloud.google.com/free-trial/docs/

  • If your current Google account is no longer eligible for the Google Cloud Platform free trial, you can create another Google account. Your new Google account should be used to sign up for the free trial.

  • View this page for more details: https://cloud.google.com/free-trial/docs/

  • Yes, this online course is based on the instructor-led training formerly known as CPB100.

  • The course covers the topics presented on the certification exam, however we recommend additional preparation including hands-on product experience. The best preparation for certification is real-world, hands-on experience. Review the Google Certified Professional Data Engineer certification preparation guide for further information and resources at https://cloud.google.com/certification/guides/data-engineer/

  • Google’s Certification Program gives customers and partners a way to demonstrate their technical skills in a particular job-role and technology. Individuals are assessed using a variety of rigorously developed industry-standard methods to determine whether they meet Google’s proficiency standards. Read more at https://cloud.google.com/certification/

還有其他問題嗎?請訪問 學生幫助中心