課程信息
4.6
3,499 個評分
677 個審閱
專項課程

第 1 門課程(共 5 門),位於

100% 在線

100% 在線

立即開始,按照自己的計劃學習。
可靈活調整截止日期

可靈活調整截止日期

根據您的日程表重置截止日期。
中級

中級

完成時間(小時)

完成時間大約為10 小時

建議:1 week of study, 6-10 hours/week...
可選語言

英語(English)

字幕:英語(English), 西班牙語(Spanish)...

您將獲得的技能

TensorflowBigqueryGoogle Cloud PlatformCloud Computing
專項課程

第 1 門課程(共 5 門),位於

100% 在線

100% 在線

立即開始,按照自己的計劃學習。
可靈活調整截止日期

可靈活調整截止日期

根據您的日程表重置截止日期。
中級

中級

完成時間(小時)

完成時間大約為10 小時

建議:1 week of study, 6-10 hours/week...
可選語言

英語(English)

字幕:英語(English), 西班牙語(Spanish)...

教學大綱 - 您將從這門課程中學到什麼

1
完成時間(小時)
完成時間為 14 分鐘

Introduction to the Data and Machine Learning on Google Cloud Platform Specialization

...
Reading
4 個視頻(共 13 分鐘), 1 個閱讀材料
Video4 個視頻
Course Overview and Agenda5分鐘
Getting Started with Google Cloud Platform and Qwiklabs2分鐘
Meet Your Instructor3分鐘
Reading1 個閱讀材料
Please read me1分鐘
完成時間(小時)
完成時間為 1 小時

Introduction to Google Cloud Platform and its Big Data Products

In this module you will be introduced to Google Cloud Platform and the data handling aspects of the platform....
Reading
5 個視頻(共 31 分鐘), 1 個測驗
Video5 個視頻
What is the Google Cloud Platform?14分鐘
GCP Big Data Products9分鐘
Usage Scenarios5分鐘
Module Resources分鐘
Quiz1 個練習
Module Review2分鐘
完成時間(小時)
完成時間為 3 小時

Foundations of GCP Compute and Storage

In this module, we introduce the foundations of the Google Cloud Platform: compute and storage and introduce how they work to provide data ingest, storage, and federated analysis....
Reading
9 個視頻(共 54 分鐘), 1 個閱讀材料, 3 個測驗
Video9 個視頻
CPUs On Demand7分鐘
Lab Overview分鐘
Lab Review8分鐘
A Global Filesystem14分鐘
Lab Overview1分鐘
Lab Review14分鐘
Module Review3分鐘
Module Resources3分鐘
Reading1 個閱讀材料
Module Resources10分鐘
Quiz1 個練習
Module Review4分鐘
完成時間(小時)
完成時間為 4 小時

Data Analysis on the Cloud

In this module we introduce the common Big Data use cases that Google will manage for you. These are the things that are widely done in industry today and for which we provide easy migration to the cloud....
Reading
10 個視頻(共 90 分鐘), 3 個測驗
Video10 個視頻
Stepping Stones to Transformation20分鐘
Your SQL Database in the Cloud5分鐘
Lab Overview分鐘
Lab Review22分鐘
Managed Hadoop in the Cloud8分鐘
Lab Overview分鐘
Lab Review27分鐘
Module Review3分鐘
Module Resources1分鐘
Quiz1 個練習
Module Review4分鐘
完成時間(小時)
完成時間為 5 小時

Scaling Data Analysis and Machine Learning

This module is about the more transformational technologies in Google Cloud platform that may not have immediate parallels to technologies that attendees are using (“what's next”)....
Reading
21 個視頻(共 82 分鐘), 1 個閱讀材料, 4 個測驗
Video21 個視頻
Fast Random Access11分鐘
Warehouse and Interactively Query Petabytes with Google BigQuery3分鐘
Ingesting data into BigQuery2分鐘
Interactive, Iterative Development with Cloud Datalab1分鐘
Cloud Datalab : Demo3分鐘
Datalab supports BigQuery2分鐘
Lab Overview分鐘
Lab Review : Setting up Datalab5分鐘
Lab Review : Working in ipython notebook6分鐘
Introduction分鐘
Machine Learning with TensorFlow8分鐘
Training and creating a Neural Network Model : Part 11分鐘
Training and Creating a Neural Network Model : Part 25分鐘
Lab Overview4分鐘
Pre-built Machine Learning Models4分鐘
Pre-built ML APIs : Examples8分鐘
Lab Review8分鐘
Module Review2分鐘
Scaling Data Analysis : Resources分鐘
Machine Learning : Resources分鐘
Reading1 個閱讀材料
Scaling Data Analysis : Resources1分鐘
Quiz1 個練習
Module Review18分鐘
完成時間(小時)
完成時間為 18 分鐘

Data Processing Architectures: Scalable Ingest, Transform and Load

In this module we will introduce you to data processing architectures in Google Cloud Platform: Asynchronous processing with TaskQueues. Message-oriented architectures with Pub/Sub. Creating pipelines with Dataflow....
Reading
4 個視頻(共 9 分鐘), 1 個閱讀材料, 1 個測驗
Video4 個視頻
Message-oriented Architectures3分鐘
Serverless Data Pipelines3分鐘
Module Review分鐘
Reading1 個閱讀材料
Module Resources5分鐘
Quiz1 個練習
Module Review4分鐘
完成時間(小時)
完成時間為 15 分鐘

Summary of GCP, Big Data and ML

...
Reading
3 個視頻(共 5 分鐘), 1 個閱讀材料
Video3 個視頻
Next Steps1分鐘
Additional Resources分鐘
Reading1 個閱讀材料
Additional Resources10分鐘
4.6
職業方向

59%

完成這些課程後已開始新的職業生涯
工作福利

83%

通過此課程獲得實實在在的工作福利

熱門審閱

創建者 CRDec 27th 2017

This was a great course to understand at a high level how to design and create my data ecosystem and how to do it sustainably. Hopefully, next courses provide more in-depth the technical features.

創建者 JIMar 27th 2018

Very good and well thought out.\n\nI just laughed out loud when the translation for "wow this is cool" to Spanish was "wow esto es fresco" (wow, this is a fresco/fresh) Classic google translate.

關於 Google Cloud

We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success....

關於 Data Engineering on Google Cloud Platform 專項課程

>>> By enrolling in this specialization you agree to the Qwiklabs Terms of Service as set out in the FAQ and located at: https://qwiklabs.com/terms_of_service <<< ***COMPLETION CHALLENGE; receive a GCP t-shirt, see more below.*** This five-week specialization provides participants a hands-on introduction to designing and building data processing systems on Google Cloud Platform. Participants will learn how to design data processing systems, build end-to-end data pipelines, analyze data and carry out machine learning. This course teaches the following skills: • Design and build data processing systems on Google Cloud Platform • Leverage unstructured data using Spark and ML APIs on Cloud Dataproc • Process batch and streaming data by implementing autoscaling data pipelines on Cloud Dataflow • Derive business insights from extremely large datasets using Google BigQuery • Train, evaluate and predict using machine learning models using Tensorflow and Cloud ML • Enable instant insights from streaming data This class is intended for developers who are responsible for: • Extracting, Loading, Transforming, cleaning, and validating data • Designing pipelines and architectures for data processing • Creating and maintaining machine learning and statistical models • Querying datasets, visualizing query results and creating reports COMPLETION CHALLENGE-Complete any GCP specialization from Oct 23 - Nov 30, 2018 to participate. Check Discussion Forums for full details....
Data Engineering on Google Cloud Platform

常見問題

  • 注册以便获得证书后,您将有权访问所有视频、测验和编程作业(如果适用)。只有在您的班次开课之后,才可以提交和审阅同学互评作业。如果您选择在不购买的情况下浏览课程,可能无法访问某些作业。

  • 您注册课程后,将有权访问专项课程中的所有课程,并且会在完成课程后获得证书。您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容,可以免费旁听课程。

  • Before enrolling in this course, participants should have roughly one (1) year of experience with one or more of the following:

    • A common query language such as SQL

    • Extract, transform, load activities

    • Data modeling

    • Machine learning and/or statistics

    • Programming in Python

  • To be eligible for the free trial, you will need:

    - Google account (Google is currently blocked in China)

    - Credit card or bank account

    - Terms of service

    Note: There is a known issue with certain EU countries where individuals are not able to sign up, but you may sign up as "business" status and intend to see a potential economic benefit from the trial. More details at: https://support.google.com/cloud/answer/6090602

    More Google Cloud Platform free trial FAQs are available at: https://cloud.google.com/free-trial/

    For more details on how the free trial works, visit our documentation page: https://cloud.google.com/free-trial/docs/

  • If your current Google account is no longer eligible for the Google Cloud Platform free trial, you can create another Google account. Your new Google account should be used to sign up for the free trial.

  • View this page for more details: https://cloud.google.com/free-trial/docs/

  • Yes, this online course is based on the instructor-led training formerly known as CPB100.

  • The course covers the topics presented on the certification exam, however we recommend additional preparation including hands-on product experience. The best preparation for certification is real-world, hands-on experience. Review the Google Certified Professional Data Engineer certification preparation guide for further information and resources at https://cloud.google.com/certification/guides/data-engineer/

  • Google’s Certification Program gives customers and partners a way to demonstrate their technical skills in a particular job-role and technology. Individuals are assessed using a variety of rigorously developed industry-standard methods to determine whether they meet Google’s proficiency standards. Read more at https://cloud.google.com/certification/

還有其他問題嗎?請訪問 學生幫助中心