This course will cover the major techniques for mining and analyzing text data to discover interesting patterns, extract useful knowledge, and support decision making, with an emphasis on statistical approaches that can be generally applied to arbitrary text data in any natural language with no or minimum human effort.
提供方


課程信息
您將獲得的技能
- Data Clustering Algorithms
- Text Mining
- Probabilistic Models
- Sentiment Analysis
提供方

伊利诺伊大学香槟分校
The University of Illinois at Urbana-Champaign is a world leader in research, teaching and public engagement, distinguished by the breadth of its programs, broad academic excellence, and internationally renowned faculty and alumni. Illinois serves the world by creating knowledge, preparing students for lives of impact, and finding solutions to critical societal needs.
授課大綱 - 您將從這門課程中學到什麼
Orientation
You will become familiar with the course, your classmates, and our learning environment. The orientation will also help you obtain the technical skills required for the course.
Week 1
During this module, you will learn the overall course design, an overview of natural language processing techniques and text representation, which are the foundation for all kinds of text-mining applications, and word association mining with a particular focus on mining one of the two basic forms of word associations (i.e., paradigmatic relations).
Week 2
During this module, you will learn more about word association mining with a particular focus on mining the other basic form of word association (i.e., syntagmatic relations), and start learning topic analysis with a focus on techniques for mining one topic from text.
Week 3
During this module, you will learn topic analysis in depth, including mixture models and how they work, Expectation-Maximization (EM) algorithm and how it can be used to estimate parameters of a mixture model, the basic topic model, Probabilistic Latent Semantic Analysis (PLSA), and how Latent Dirichlet Allocation (LDA) extends PLSA.
Week 4
During this module, you will learn text clustering, including the basic concepts, main clustering techniques, including probabilistic approaches and similarity-based approaches, and how to evaluate text clustering. You will also start learning text categorization, which is related to text clustering, but with pre-defined categories that can be viewed as pre-defining clusters.
審閱
- 5 stars67.78%
- 4 stars20.55%
- 3 stars8.01%
- 2 stars1.89%
- 1 star1.74%
來自文本挖掘和分析的熱門評論
It is rare to find an online course that explains the statistics and intuition behind text mining and machine learning algorithm!
Practical stuff were lacking in python rest the content was excellent. love the way the instructor taught the content
Outstanding mix of theory and practical applications to help understand the theory. Well organized and excellent presentations. Thank you!
Good course, but if combined with weekly assignments in python and R it would be even better than any other course.
關於 数据挖掘 專項課程
The Data Mining Specialization teaches data mining techniques for both structured data which conform to a clearly defined schema, and unstructured data which exist in the form of natural language text. Specific course topics include pattern discovery, clustering, text retrieval, text mining and analytics, and data visualization. The Capstone project task is to solve real-world data mining challenges using a restaurant review data set from Yelp.

常見問題
我什么时候能够访问课程视频和作业?
我订阅此专项课程后会得到什么?
有助学金吗?
還有其他問題嗎?請訪問 學生幫助中心。