概率图模型 專項課程

斯坦福大学

關於此 專項課程

Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems.

立即開始，按照自己的計劃學習。

設置並保持靈活的截止日期。

建議 6 小時/週

字幕：英語（English）...

InferenceBayesian NetworkBelief PropagationGraphical Model

立即開始，按照自己的計劃學習。

設置並保持靈活的截止日期。

建議 6 小時/週

字幕：英語（English）...

Coursera 專項課程是幫助您掌握一門技能的一系列課程。若要開始學習，請直接註冊專項課程，或預覽專項課程並選擇您要首先開始學習的課程。當您訂閱專項課程的部分課程時，您將自動訂閱整個專項課程。您可以只完成一門課程，您可以隨時暫停學習或結束訂閱。訪問您的學生面板，跟踪您的課程註冊情況和進度。

每個專項課程都包括實踐項目。您需要成功完成這個（些）項目才能完成專項課程並獲得證書。如果專項課程中包括單獨的實踐項目課程，則需要在開始之前完成其他所有課程。

在結束每門課程並完成實踐項目之後，您會獲得一個證書，您可以向您的潛在雇主展示該證書並在您的職業社交網絡中分享。

4.7

944 個評分

•

218 個審閱

Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems.
This course is the first in a sequence of three. It describes the two basic PGM representations: Bayesian Networks, which rely on a directed graph; and Markov networks, which use an undirected graph. The course discusses both the theoretical properties of these representations as well as their use in practice. The (highly recommended) honors track contains several hands-on assignments on how to represent some real-world problems. The course also presents some important extensions beyond the basic PGM representation, which allow more complex models to be encoded compactly....

4.6

305 個評分

•

49 個審閱

Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems.
This course is the second in a sequence of three. Following the first course, which focused on representation, this course addresses the question of probabilistic inference: how a PGM can be used to answer questions. Even though a PGM generally describes a very high dimensional distribution, its structure is designed so as to allow questions to be answered efficiently. The course presents both exact and approximate algorithms for different types of inference tasks, and discusses where each could best be applied. The (highly recommended) honors track contains two hands-on programming assignments, in which key routines of the most commonly used exact and approximate algorithms are implemented and applied to a real-world problem....

4.6

183 個評分

•

28 個審閱

Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems.
This course is the third in a sequence of three. Following the first course, which focused on representation, and the second, which focused on inference, this course addresses the question of learning: how a PGM can be learned from a data set of examples. The course discusses the key problems of parameter estimation in both directed and undirected models, as well as the structure learning task for directed models. The (highly recommended) honors track contains two hands-on programming assignments, in which key routines of two commonly used learning algorithms are implemented and applied to a real-world problem....

The Leland Stanford Junior University, commonly referred to as Stanford University or Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto, California, United States....

退款政策是如何规定的？

我可以只注册一门课程吗？

可以！点击您感兴趣的课程卡开始注册即可。注册并完成课程后，您可以获得可共享的证书，或者您也可以旁听该课程免费查看课程资料。如果您订阅的课程是某专项课程的一部分，系统会自动为您订阅完整的专项课程。访问您的学生面板，跟踪您的进度。

有助学金吗？

我可以免费学习课程吗？

此课程是 100% 在线学习吗？是否需要现场参加课程？

此课程完全在线学习，无需到教室现场上课。您可以通过网络或移动设备随时随地访问课程视频、阅读材料和作业。

完成专项课程后我会获得大学学分吗？

此专项课程不提供大学学分，但部分大学可能会选择接受专项课程证书作为学分。查看您的合作院校了解详情。

完成专项课程需要多长时间？

The Specialization has three five-week courses, for a total of fifteen weeks.

What background knowledge is necessary?

This class does require some abstract thinking and mathematical skills. However, it is designed to require fairly little background, and a motivated student can pick up the background material as the concepts are introduced. We hope that, using our new learning platform, it should be possible for everyone to understand all of the core material.

Though, you should be able to program in at least one programming language and have a computer (Windows, Mac or Linux) with internet access (programming assignments will be conducted in Matlab or Octave). It also helps to have some previous exposure to basic concepts in discrete probability theory (independence, conditional independence, and Bayes' rule).

Do I need to take the courses in a specific order?

For best results, the courses should be taken in order.

What will I be able to do upon completing the Specialization?

You will be able to take a complex task and understand how it can be encoded as a probabilistic graphical model. You will now know how to implement the core probabilistic inference techniques, how to select the right inference method for the task, and how to use inference to reason. You will also know how to take a data set and use it to learn a model, whether from scratch, or to refine or complete a partially specified model.

還有其他問題嗎？請訪問 學生幫助中心。