Machine Learning with TensorFlow Google Cloud Platform 日本語版 專項課程
Google Cloud で機械学習(ML)について学ぶ. 実践的なデータを使用した包括的な ML 実習
提供方
您將獲得的技能
關於此 專項課程
應用的學習項目
この専門講座には 、Qwiklabs プラットフォームを使用したハンズオンラボが組み込まれています。
こうしたハンズオン コンポーネントにより、講義動画で学んだスキルを実際に使ってみることができます。プロジェクトには、Qwiklabs 内で使用、構成された Google Cloud Platform プロダクトなどのトピックが組み込まれています。モジュール全体で説明されている概念を使用して実際に体験してみましょう。
需要一些相關領域經驗。需要一些相關經驗。
需要一些相關領域經驗。需要一些相關經驗。
此專項課程包含 5 門課程
How Google does Machine Learning 日本語版
機械学習とはどのようなもので、どのような問題の解決に役立つのでしょうか。Google では機械学習について、データだけでなくロジックの面からも独自の視点で考えています。こうした捉え方が、機械学習モデルのパイプライン構築を考えるうえでなぜ有効なのか説明します。次に、候補となるユースケースを機械学習で学習できる形に変換する 5 つの段階について説明し、こうした段階を省略しないことの重要性について論じます。最後に、機械学習が助長する可能性のある偏見の認識と、それを識別する方法について説明します。
Launching into Machine Learning 日本語版
機械学習の歴史を皮切りに、ニューラル ネットワークがデータ サイエンスのさまざまな問題でうまく機能している理由をご紹介します。次に、教師あり学習の問題を設定し、勾配降下法を使用して適切な解決策を見つける方法について説明します。これには、一般化が可能なデータセットの作成も含まれます。実験に対応するため、繰り返し使用できるデータセットの作成方法について解説します。
Intro to TensorFlow 日本語版
このコースの目的は、柔軟で手軽な TensorFlow 2.x と Keras を使用して、機械学習モデルを作成、トレーニング、およびデプロイすることです。TensorFlow 2.x API の階層について学び、TensorFlow の主要コンポーネントを実践演習で理解します。データセットと特徴列の扱い方について学びます。TensorFlow 2.x 入力データ パイプラインの設計と作成の方法について学びます。tf.data.Dataset を使用して csv データ、NumPy 配列、テキストデータ、および画像を読み込む実践演習を行います。数値、カテゴリ、バケット、およびハッシュの特徴列を作成する実践演習も行います。
Feature Engineering 日本語版
機械学習モデルの精度を高める方法や、特に有効な特徴を抽出するためのデータ列の見極め方を知りたい人におすすめのコースです。Feature Engineering on Google Cloud Platform では、良い特徴と悪い特徴の要素について、また、機械学習モデルで最適に使用できるように、特徴を前処理して変換する方法についても取り上げます。
提供方

Google 云端平台
We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success.
常見問題
退款政策是如何规定的?
我可以只注册一门课程吗?
有助学金吗?
我可以免费学习课程吗?
此课程是 100% 在线学习吗?是否需要现场参加课程?
完成专项课程后我会获得大学学分吗?
完成专项课程后我会获得大学学分吗?
還有其他問題嗎?請訪問 學生幫助中心。