關於此 專項課程

The main goal of this specialization is to provide the knowledge and practical skills necessary to develop a strong foundation on core paradigms and algorithms of machine learning (ML), with a particular focus on applications of ML to various practical problems in Finance.

The specialization aims at helping students to be able to solve practical ML-amenable problems that they may encounter in real life that include:

(1) mapping the problem on a general landscape of available ML methods,

(2) choosing particular ML approach(es) that would be most appropriate for resolving the problem, and

(3) successfully implementing a solution, and assessing its performance.

The specialization is designed for three categories of students:

· Practitioners working at financial institutions such as banks, asset management firms or hedge funds

· Individuals interested in applications of ML for personal day trading

· Current full-time students pursuing a degree in Finance, Statistics, Computer Science, Mathematics, Physics, Engineering or other related disciplines who want to learn about practical applications of ML in Finance.

The modules can also be taken individually to improve relevant skills in a particular area of applications of ML to finance.

學生職業成果
50%
完成此 專項課程 後開始了新的職業。
可分享的證書
完成後獲得證書
100% 在線課程
立即開始,按照自己的計劃學習。
靈活的計劃
設置並保持靈活的截止日期。
中級
完成時間大約為4 個月
建議 5 小時/週
英語(English)
字幕:英語(English), 法語(French)
學生職業成果
50%
完成此 專項課程 後開始了新的職業。
可分享的證書
完成後獲得證書
100% 在線課程
立即開始,按照自己的計劃學習。
靈活的計劃
設置並保持靈活的截止日期。
中級
完成時間大約為4 個月
建議 5 小時/週
英語(English)
字幕:英語(English), 法語(French)

此專項課程包含 4 門課程

課程1

課程 1

Guided Tour of Machine Learning in Finance

3.8
521 個評分
162 條評論
課程2

課程 2

Fundamentals of Machine Learning in Finance

3.8
260 個評分
53 條評論
課程3

課程 3

Reinforcement Learning in Finance

3.5
94 個評分
24 條評論
課程4

課程 4

Overview of Advanced Methods of Reinforcement Learning in Finance

3.8
63 個評分
11 條評論

提供方

New York University 徽標

New York University

常見問題

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Yes! To get started, click the course card that interests you and enroll. You can enroll and complete the course to earn a shareable certificate, or you can audit it to view the course materials for free. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. Visit your learner dashboard to track your progress.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. If you only want to read and view the course content, you can audit the course for free. If you cannot afford the fee, you can apply for financial aid.

  • This course is completely online, so there’s no need to show up to a classroom in person. You can access your lectures, readings and assignments anytime and anywhere via the web or your mobile device.

  • This Specialization doesn't carry university credit, but some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • Prerequisites for the specialization are basic math including calculus and linear algebra, basic probability theory and statistics, and some programming skills in Python. For students that are not familiar with Python and IPython / Jupyter notebooks, reference to tutorials are provided as a part of further reading.

還有其他問題嗎?請訪問 學生幫助中心