- Decision Trees
- Artificial Neural Network
- Logistic Regression
- Recommender Systems
- Linear Regression
- Regularization to Avoid Overfitting
- Gradient Descent
- Supervised Learning
- Logistic Regression for Classification
- Xgboost
- Tensorflow
- Tree Ensembles
机器学习 專項課程
#BreakIntoAI with Machine Learning Specialization. Master fundamental AI concepts and develop practical machine learning skills in the beginner-friendly, 3-course program by AI visionary Andrew Ng
提供方


您將學到的內容有
Build ML models with NumPy & scikit-learn, build & train supervised models for prediction & binary classification tasks (linear, logistic regression)
Build & train a neural network with TensorFlow to perform multi-class classification, & build & use decision trees & tree ensemble methods
Apply best practices for ML development & use unsupervised learning techniques for unsupervised learning including clustering & anomaly detection
Build recommender systems with a collaborative filtering approach & a content-based deep learning method & build a deep reinforcement learning model
您將獲得的技能
關於此 專項課程
應用的學習項目
By the end of this Specialization, you will be ready to:
• Build machine learning models in Python using popular machine learning libraries NumPy and scikit-learn.
• Build and train supervised machine learning models for prediction and binary classification tasks, including linear regression and logistic regression.
• Build and train a neural network with TensorFlow to perform multi-class classification.
• Apply best practices for machine learning development so that your models generalize to data and tasks in the real world.
• Build and use decision trees and tree ensemble methods, including random forests and boosted trees.
• Use unsupervised learning techniques for unsupervised learning: including clustering and anomaly detection.
• Build recommender systems with a collaborative filtering approach and a content-based deep learning method.
• Build a deep reinforcement learning model.
- Basic coding (for loops, functions, if/else statements) & high school-level math (arithmetic, algebra)
- Other math concepts will be explained
- Basic coding (for loops, functions, if/else statements) & high school-level math (arithmetic, algebra)
- Other math concepts will be explained
專項課程的運作方式
加入課程
Coursera 專項課程是幫助您掌握一門技能的一系列課程。若要開始學習,請直接註冊專項課程,或預覽專項課程並選擇您要首先開始學習的課程。當您訂閱專項課程的部分課程時,您將自動訂閱整個專項課程。您可以只完成一門課程,您可以隨時暫停學習或結束訂閱。訪問您的學生面板,跟踪您的課程註冊情況和進度。
實踐項目
每個專項課程都包括實踐項目。您需要成功完成這個(些)項目才能完成專項課程並獲得證書。如果專項課程中包括單獨的實踐項目課程,則需要在開始之前完成其他所有課程。
獲得證書
在結束每門課程並完成實踐項目之後,您會獲得一個證書,您可以向您的潛在雇主展示該證書並在您的職業社交網絡中分享。

此專項課程包含 3 門課程
Supervised Machine Learning: Regression and Classification
In the first course of the Machine Learning Specialization, you will:
Advanced Learning Algorithms
In the second course of the Machine Learning Specialization, you will:
Unsupervised Learning, Recommenders, Reinforcement Learning
In the third course of the Machine Learning Specialization, you will:
提供方

deeplearning.ai
DeepLearning.AI is an education technology company that develops a global community of AI talent.

斯坦福大学
The Leland Stanford Junior University, commonly referred to as Stanford University or Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto, California, United States.
常見問題
退款政策是如何规定的?
我可以只注册一门课程吗?
有助学金吗?
我可以免费学习课程吗?
此课程是 100% 在线学习吗?是否需要现场参加课程?
What is machine learning?
What is the Machine Learning Specialization about?
What will I learn in the Machine Learning Specialization?
What background knowledge is necessary for the Machine Learning Specialization?
Who is the Machine Learning Specialization for?
How long does it take to complete the Machine Learning Specialization?
Who created the Machine Learning Specialization?
What makes the Machine Learning Specialization so unique?
How is the new Machine Learning Specialization different from the original course?
I'm a complete beginner. Can I take this Specialization?
I enrolled in but couldn’t complete the original Machine Learning course. Can I take the new Machine Learning Specialization?
I’ve completed the original Machine Learning course. Should I take the new Machine Learning Specialization?
I’ve completed the Deep Learning Specialization. Should I take the new Machine Learning Specialization?
Is this a standalone course or a Specialization?
Do I need to take the courses in a specific order?
How much does the Specialization cost?
Can I apply for financial aid?
Can I audit the Machine Learning Specialization?
How do I get a receipt to get this reimbursed by my employer?
I want to purchase this Specialization for my employees. How can I do that?
完成专项课程后我会获得大学学分吗?
Will I receive a certificate at the end of the Specialization?
還有其他問題嗎?請訪問 學生幫助中心。