- Generator
- Image-to-Image Translation
- glossary of computer graphics
- Discriminator
- Generative Adversarial Networks
- Controllable Generation
- WGANs
- Conditional Generation
- Components of GANs
- DCGANs
- Bias in GANs
- StyleGANs
Generative Adversarial Networks (GANs) 專項課程
Break into the GANs space. Master cutting-edge GANs techniques through three hands-on courses!
提供方


您將學到的內容有
Understand GAN components, build basic GANs using PyTorch and advanced DCGANs using convolutional layers, control your GAN and build conditional GAN
Compare generative models, use FID method to assess GAN fidelity and diversity, learn to detect bias in GAN, and implement StyleGAN techniques
Use GANs for data augmentation and privacy preservation, survey GANs applications, and examine and build Pix2Pix and CycleGAN for image translation
您將獲得的技能
關於此 專項課程
應用的學習項目
Course 1: In this course, you will understand the fundamental components of GANs, build a basic GAN using PyTorch, use convolutional layers to build advanced DCGANs that processes images, apply W-Loss function to solve the vanishing gradient problem, and learn how to effectively control your GANs and build conditional GANs.
Course 2: In this course, you will understand the challenges of evaluating GANs, compare different generative models, use the Fréchet Inception Distance (FID) method to evaluate the fidelity and diversity of GANs, identify sources of bias and the ways to detect it in GANs, and learn and implement the techniques associated with the state-of-the-art StyleGAN.
Course 3: In this course, you will use GANs for data augmentation and privacy preservation, survey more applications of GANs, and build Pix2Pix and CycleGAN for image translation.
- Basic calculus, linear algebra, stats
- Grasp of AI, deep learning & CNNs
- Intermediate Python & experience with DL frameworks (TF / Keras / PyTorch)
- Basic calculus, linear algebra, stats
- Grasp of AI, deep learning & CNNs
- Intermediate Python & experience with DL frameworks (TF / Keras / PyTorch)
專項課程的運作方式
加入課程
Coursera 專項課程是幫助您掌握一門技能的一系列課程。若要開始學習,請直接註冊專項課程,或預覽專項課程並選擇您要首先開始學習的課程。當您訂閱專項課程的部分課程時,您將自動訂閱整個專項課程。您可以只完成一門課程,您可以隨時暫停學習或結束訂閱。訪問您的學生面板,跟踪您的課程註冊情況和進度。
實踐項目
每個專項課程都包括實踐項目。您需要成功完成這個(些)項目才能完成專項課程並獲得證書。如果專項課程中包括單獨的實踐項目課程,則需要在開始之前完成其他所有課程。
獲得證書
在結束每門課程並完成實踐項目之後,您會獲得一個證書,您可以向您的潛在雇主展示該證書並在您的職業社交網絡中分享。

提供方

deeplearning.ai
DeepLearning.AI is an education technology company that develops a global community of AI talent.
常見問題
退款政策是如何规定的?
我可以只注册一门课程吗?
有助学金吗?
我可以免费学习课程吗?
此课程是 100% 在线学习吗?是否需要现场参加课程?
完成专项课程后我会获得大学学分吗?
What are GANs?
What are the applications of GANs?
Why are GANs important?
What is the GANs Specialization about?
What will I learn in the GANs Specialization?
Who is the GANs Specialization for?
What background knowledge is necessary?
What will I be able to do upon completing the Specialization?
Who created the GANs Specialization?
Is this a standalone course or a Specialization?
Do I need to take the courses in a specific order?
Can I audit the Specialization?
完成专项课程需要多长时间?
還有其他問題嗎?請訪問 學生幫助中心。