NLP: Twitter Sentiment Analysis

4.6
300 個評分
提供方
Coursera Project Network
8,081 人已註冊
在此指導項目中,您將:

Create a pipeline to remove stop-words, punctuation, and perform tokenization

Understand the theory and intuition behind Naive Bayes classifiers

Train a Naive Bayes Classifier and assess its performance

Clock2 hours
Beginner初級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

In this hands-on project, we will train a Naive Bayes classifier to predict sentiment from thousands of Twitter tweets. This project could be practically used by any company with social media presence to automatically predict customer's sentiment (i.e.: whether their customers are happy or not). The process could be done automatically without having humans manually review thousands of tweets and customer reviews. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培養的技能

  • Artificial Intelligence (AI)
  • Python Programming
  • Machine Learning
  • Natural Language Processing

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Import libraries and datasets

  2. Perform Exploratory Data Analysis

  3. Plot the word cloud

  4. Perform data cleaning - removing punctuation

  5. Perform data cleaning - remove stop words

  6. Perform Count Vectorization (Tokenization)

  7. Create a pipeline to remove stop-words, punctuation, and perform tokenization

  8. Understand the theory and intuition behind Naive Bayes classifiers

  9. Train a Naive Bayes Classifier

  10. Assess trained model performance

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

授課教師

審閱

來自NLP: TWITTER SENTIMENT ANALYSIS的熱門評論

查看所有評論

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心