Semantic Segmentation with Amazon Sagemaker

4.7
34 個評分
提供方
Coursera Project Network
2,834 人已註冊
在此指導項目中,您將:

Prepare data for Sagemaker Semantic Segmentation.

Train a model using Sagemaker.

Deploy a trained model using Sagemaker.

Clock2 hours
Advanced高級設置
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

Please note: You will need an AWS account to complete this course. Your AWS account will be charged as per your usage. Please make sure that you are able to access Sagemaker within your AWS account. If your AWS account is new, you may need to ask AWS support for access to certain resources. You should be familiar with python programming, and AWS before starting this hands on project. We use a Sagemaker P type instance in this project, and if you don't have access to this instance type, please contact AWS support and request access. In this 2-hour long project-based course, you will learn how to train and deploy a Semantic Segmentation model using Amazon Sagemaker. Sagemaker provides a number of machine learning algorithms ready to be used for solving a number of tasks. We will use the semantic segmentation algorithm from Sagemaker to create, train and deploy a model that will be able to segment images of dogs and cats from the popular IIIT-Oxford Pets Dataset into 3 unique pixel values. That is, each pixel of an input image would be classified as either foreground (pet), background (not a pet), or unclassified (transition between foreground and background). Since this is a practical, project-based course, we will not dive in the theory behind deep learning based semantic segmentation, but will focus purely on training and deploying a model with Sagemaker. You will also need to have some experience with Amazon Web Services (AWS).

您要培養的技能

Deep Learningsemantic segmentationMachine LearningsagemakerComputer Vision

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Introduction

  2. Download the Data

  3. Visualize the Data

  4. Training Image

  5. Preparing the Data

  6. Uploading the Data to S3

  7. Sagemaker Estimator

  8. Hyperparameters

  9. Data Channels

  10. Model Training

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心