Image Compression with K-Means Clustering

4.6
263 個評分
提供方
Coursera Project Network
7,380 人已註冊
在此指導項目中,您將:

Explain the steps involved in k-means clustering

Apply k-means clustering with scikit-learn to compress images

Create interactive, GUI components in Jupyter notebooks using Jupyter widgets

Clock2 hours
Beginner初級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

In this project, you will apply the k-means clustering unsupervised learning algorithm using scikit-learn and Python to build an image compression application with interactive controls. By the end of this 45-minute long project, you will be competent in pre-processing high-resolution image data for k-means clustering, conducting basic exploratory data analysis (EDA) and data visualization, applying a computationally time-efficient implementation of the k-means algorithm, Mini-Batch K-Means, to compress images, and leverage the Jupyter widgets library to build interactive GUI components to select images from a drop-down list and pick values of k using a slider. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培養的技能

Machine LearningclusteringIpythonK-Means ClusteringScikit-Learn

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Introduction and Overview

  2. Data Preprocessing

  3. Visualizing the Color Space using Point Clouds

  4. Visualizing the K-means Reduced Color Space

  5. Creating Interactive Controls with Jupyter Widgets

  6. K-means Image Compression with Interactive Controls

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

審閱

來自IMAGE COMPRESSION WITH K-MEANS CLUSTERING 的熱門評論

查看所有評論

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心