Regression with Automatic Differentiation in TensorFlow

4.7
60 個評分
提供方
Coursera Project Network
4,318 人已註冊
在此指導項目中,您將:

Understanding tensor constants, and tensor variables in TensorFlow.

Understanding automatic differentiation in TensorFlow.

Using automatic differentiation to solve a linear regression problem in TensorFlow.

Clock1.5 hours
Beginner初級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

In this 1.5 hour long project-based course, you will learn about constants and variables in TensorFlow, you will learn how to use automatic differentiation, and you will apply automatic differentiation to solve a linear regression problem. By the end of this project, you will have a good understanding of how machine learning algorithms can be implemented in TensorFlow. In order to be successful in this project, you should be familiar with Python, Gradient Descent, Linear Regression. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培養的技能

  • Mathematical Optimization
  • Machine Learning
  • Tensorflow
  • Linear Regression
  • Automatic Differentiation

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Tensor Constants

  2. Tensor Variables

  3. Automatic Differentiation

  4. Watching Tensors

  5. Persistent Tape

  6. Generating Data for Linear Regression

  7. Linear Regression

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

審閱

來自REGRESSION WITH AUTOMATIC DIFFERENTIATION IN TENSORFLOW的熱門評論

查看所有評論

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心