Evaluate Machine Learning Models with Yellowbrick

4.8
49 個評分
提供方
Coursera Project Network
2,884 人已註冊
在此指導項目中,您將:

Build and evaluate a logistic regression classifier with scikit-learn

Use visualization and model diagnostic tools from Yellowbrick to steer your machine learning workflow

Clock2 hours
Intermediate中級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

Welcome to this project-based course on Evaluating Machine Learning Models with Yellowbrick. In this course, we are going to use visualizations to steer our machine learning workflow. The problem we will tackle is to predict whether rooms in apartments are occupied or unoccupied based on passive sensor data such as temperature, humidity, light and CO2 levels. We will build a logistic regression model for binary classification. This is a continuation of the course on Room Occupancy Detection. With an emphasis on visual steering of our analysis, we will cover the following topics in our machine learning workflow: model evaluation with ROC/AUC plots, confusion matrices, cross-validation scores, and setting discrimination thresholds for logistic regression models. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, Yellowbrick, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培養的技能

  • Data Science
  • Machine Learning
  • Python Programming
  • Data Visualization (DataViz)
  • Scikit-Learn

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. ROC/AUC Plots

  2. Classification Report and Confusion Matrix

  3. Cross-validation Scores

  4. Evaluating Class Balance

  5. Discrimination Threshold for Logistic Regression

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

審閱

來自EVALUATE MACHINE LEARNING MODELS WITH YELLOWBRICK的熱門評論

查看所有評論

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心