Image Noise Reduction with Auto-encoders using TensorFlow

4.7
105 個評分
提供方
Coursera Project Network
4,597 人已註冊
在此指導項目中,您將:

Develop an understanding of how Auto encoders work.

Be able to apply an auto encoder to reduce noise in given images.

Clock2 hours
Intermediate中級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

In this 2-hour long project-based course, you will learn the basics of image noise reduction with auto-encoders. Auto-encoding is an algorithm to help reduce dimensionality of data with the help of neural networks. It can be used for lossy data compression where the compression is dependent on the given data. This algorithm to reduce dimensionality of data as learned from the data can also be used for reducing noise in data. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Tensorflow pre-installed. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培養的技能

  • Data Science
  • Deep Learning
  • Noise Reduction
  • Machine Learning
  • Autoencoder

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Introduction and Importing Libraries

  2. Data Preprocessing

  3. Adding Noise

  4. Building and Training a Classifier

  5. Building the Autoencoder

  6. Training the Autoencoder

  7. Denoised Images

  8. Composite Model

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

授課教師

審閱

來自IMAGE NOISE REDUCTION WITH AUTO-ENCODERS USING TENSORFLOW的熱門評論

查看所有評論

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心