Identify and interpret inherent quantitative relationships in datasets
Produce and customize various chart types with Seaborn in Python
Apply graphical techniques in exploratory data analysis (EDA)
Producing visualizations is an important first step in exploring and analyzing real-world data sets. As such, visualization is an indispensable method in any data scientist's toolbox. It is also a powerful tool to identify problems in analyses and for illustrating results.In this project-based course, we will employ the statistical data visualization library, Seaborn, to discover and explore the relationships in the Breast Cancer Wisconsin (Diagnostic) Data Set. We will cover key concepts in exploratory data analysis (EDA) using visualizations to identify and interpret inherent relationships in the data set, produce various chart types including histograms, violin plots, box plots, joint plots, pair grids, and heatmaps, customize plot aesthetics and apply faceting methods to visualize higher dimensional data. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:
Introduction and Importing Data
Separate Target from Features
Diagnosis Distribution Visualization
Visualizing Standardized Data with Seaborn
Violin Plots and Box Plots
Use Joint Plots for Feature Comparison
Observing Distributions and their Variance with Swarm Plots
Obtaining all Pairwise Correlations
您的工作空間就是瀏覽器中的雲桌面,無需下載
在分屏視頻中,您的授課教師會為您提供分步指導
This project is great for people go want to advances her career exploring new viz techniques. The instructor is great, clear and easy to follow. I will definitely recommend to take this project.
As a beginner, this was a very good insight into EDA for me. You will however, have to read the documentation and more articles to go in-depth. However, this is a very good introductory course.
This was my first guided project . It was a nice experience and the course material was truly helpful for me. The instructor's pace of teaching was absolutely stunning.
The course is a great course for a data scientist! Very practical and I like the way the instructor explains the concept and the interpretation of the data.
如果我購買指導項目,會得到什麼?
購買指導項目後,您將獲得完成指導項目所需的一切,包括通過Web 瀏覽器訪問云桌面工作空間,工作空間中包含您需要了解的文件和軟件,以及特定領域的專家提供的分步視頻說明。
指導項目可在台式設備和移動設備上學習嗎?
由於您的工作空間包含適合筆記本電腦或台式計算機使用的雲桌面,因此指導項目不在移動設備上提供。
指導項目的講師是誰?
指導項目講師是特定領域的專家,他們在項目的技能、工具或領域方面經驗豐富,並且熱衷於分享自己的知識以影響全球數百萬的學生。
我能在完成指導項目後從中下載作品嗎?
您可以從指導項目中下載並保留您創建的任何文件。為此,您可以在訪問云桌面時使用‘文件瀏覽器’功能。
我能夠退款嗎?退款政策是如何規定的?
指導項目不符合退款條件。 請查看我們完整的退款政策。
有助學金嗎?
指導項目不提供助學金。
我能旁聽指導項目並免費觀看視頻部分嗎?
指導項目不支持旁聽。
我需要具備多少經驗才能做這個指導項目?
您可在頁面頂部點按此指導項目的經驗級別,查看任何知識先決條件。對於指導項目的每個級別,您的講師會逐步為您提供指導。
我能直接通過 Web 瀏覽器來完成此指導項目,而不必安裝特殊軟件嗎?
是,您可以在瀏覽器的雲桌面中獲得完成指導項目所需的一切。
指導項目的學習體驗如何?
您可以直接在瀏覽器中於分屏環境下完成任務,以此從做中學。在屏幕的左側,您將在工作空間中完成任務。在屏幕的右側,您將看到有講師逐步指導您完成項目。
還有其他問題嗎?請訪問 學生幫助中心。