Dimensionality Reduction using an Autoencoder in Python

4.6
91 個評分
提供方
Coursera Project Network
3,214 人已註冊
在此指導項目中,您將:

How to generate and preprocess high-dimensional data

How an autoencoder works, and how to train one in scikit-learn

How to extract the encoder portion from a trained model, and reduce dimensionality of your input data

Clock60 minutes
Intermediate中級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

In this 1-hour long project, you will learn how to generate your own high-dimensional dummy dataset. You will then learn how to preprocess it effectively before training a baseline PCA model. You will learn the theory behind the autoencoder, and how to train one in scikit-learn. You will also learn how to extract the encoder portion of it to reduce dimensionality of your input data. In the course of this project, you will also be exposed to some basic clustering strength metrics. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培養的技能

  • Dimensionality Reduction
  • Artificial Neural Network
  • Machine Learning
  • clustering

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. An introduction to the problem and a summary of needed imports

  2. Dataset creation and preprocessing

  3. Using PCA as a baseline for model performance

  4. Theory behind the autoencoder architecture and how to train a model in scikit-learn

  5. Reducing dimensionality using the encoder half of an autoencoder within scikit-learn

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

授課教師

審閱

來自DIMENSIONALITY REDUCTION USING AN AUTOENCODER IN PYTHON 的熱門評論

查看所有評論

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心