Machine Learning Pipelines with Azure ML Studio

4.6
226 個評分
提供方
Coursera Project Network
11,158 人已註冊
在此指導項目中,您將:

Pre-process data using appropriate modules

Train and evaluate a boosted decision tree model on Azure ML Studio

Create scoring and predictive experiments

Deploy the trained model as an Azure web service

Clock2 hours
Beginner初級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

In this project-based course, you are going to build an end-to-end machine learning pipeline in Azure ML Studio, all without writing a single line of code! This course uses the Adult Income Census data set to train a model to predict an individual's income. It predicts whether an individual's annual income is greater than or less than $50,000. The estimator used in this project is a Two-Class Boosted Decision Tree classifier. Some of the features used to train the model are age, education, occupation, etc. Once you have scored and evaluated the model on the test data, you will deploy the trained model as an Azure Machine Learning web service. In just under an hour, you will be able to send new data to the web service API and receive the resulting predictions. This is the second course in this series on building machine learning applications using Azure Machine Learning Studio. I highly encourage you to take the first course before proceeding. It has instructions on how to set up your Azure ML account with $200 worth of free credit to get started with running your experiments! This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培養的技能

Data ScienceMachine LearningData AnalysisBinary ClassificationAzure Machine Learning

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Introduction and Project Overview

  2. Data Cleaning

  3. Accounting for Class Imbalance

  4. Training a Two-Class Boosted Decision Tree Model and Hyperparameter Tuning

  5. Scoring and Evaluating the Models

  6. Publishing the Trained Model as a Web Service for Inference

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

審閱

來自MACHINE LEARNING PIPELINES WITH AZURE ML STUDIO的熱門評論

查看所有評論

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心