Spatial (map) is considered as a core infrastructure of modern IT world, which is substantiated by business transactions of major IT companies such as Apple, Google, Microsoft, Amazon, Intel, and Uber, and even motor companies such as Audi, BMW, and Mercedes. Consequently, they are bound to hire more and more spatial data scientists. Based on such business trend, this course is designed to present a firm understanding of spatial data science to the learners, who would have a basic knowledge of data science and data analysis, and eventually to make their expertise differentiated from other nominal data scientists and data analysts. Additionally, this course could make learners realize the value of spatial big data and the power of open source software's to deal with spatial data science problems.

## 課程信息

### 學生職業成果

## 22%

## 25%

## 27%

### 您將獲得的技能

### 學生職業成果

## 22%

## 25%

## 27%

### 提供方

#### 延世大学

Yonsei University was established in 1885 and is the oldest private university in Korea.

## 教學大綱 - 您將從這門課程中學到什麼

**完成時間為 2 小時**

## Understanding Spatial Data Science

The first module of "Spatial Data Science and Applications" is entitled to "Understanding of Spatial Data Science." This module is composed of four lectures. The first lecture "Introduction to spatial data science" was designed to give learners a solid concept of spatial data science in comparison with science, data science, and spatial data science. For Learner's better understanding, examples of spatial data science problems are also presented. The second, third, and fourth lectures focuses on "what is spatial special? - unique aspects of spatial data science from three perspectives of business, technology, and data, respectively. In the second lecture, learners will learn five reasons why major IT companies are serious about spatial data, in other words, maps. The third lecture will allow learners to understand four issues of dealing with spatial data, including DBMS problems, topology, spatial indexing, and spatial big data problems. The fourth lecture will allow learners to understand another four issues of spatial data including spatial autocorrelation, map projection, uncertainty, and modifiable areal unit problem.

**完成時間為 2 小時**

**5 個視頻**

**1 個練習**

**完成時間為 2 小時**

## Solution Structures of Spatial Data Science Problems

The second module is entitled to "Solution Structures of Spatial Data Science Problems", which is composed of four lectures and will give learners an overview of academic subjects, software tools, and their combinations for the solution structures of spatial data science problems. The first lecture, "Four Disciplines for Spatial Data Science and Applications" will introduce four academic disciplines related to spatial data science, which are Geographic Information System (GIS), Database Management System (DBMS), Data Analytics, and Big Data Systems. The second lecture "Open Source Software's" will introduce open source software's in the four related disciplines, QGIS for GIS, PostgreSQL and PostGIS for DBMS, R for Data Analytics, Hadoop and Hadoop-based solutions for Big Data System, which will be used throughout this course. The third lecture "Spatial Data Science Problems" will present six solution structures, which are different combinations of GIS, DBMS, Data Analytics, and Big Data Systems. The solution structures are related to the characteristics of given problems, which are the data size, the number of users, level of analysis, and main focus of problems. The fourth lecture "Spatial Data vs. Spatial Big Data" will make learner have a solid understanding of spatial data and spatial big data in terms of similarity and differences. Additionally, the value of spatial big data will be discussed.

**完成時間為 2 小時**

**4 個視頻**

**2 個閱讀材料**

**1 個練習**

**完成時間為 2 小時**

## Geographic Information System (GIS)

The third module is "Geographic Information System (GIS)", which is one of the four disciplines for spatial data science. GIS has five layers, which are spatial reference framework, spatial data model, spatial data acquisition systems, spatial data analysis, and geo-visualization. This module is composed of six lecture. The first lecture "Five Layers of GIS" is an introduction to the third module. The rest of the lectures will cover the five layers of GIS, one by one. The second lecture "Spatial Reference Framework" will make learners understand, first, a series of formulation steps of physical earth, geoid, ellipsoid, datum, and map projections, second, coordinate transformation between different map projections. The third lecture "Spatial Data Models" will teach learners how to represent spatial reality in two spatial data models - vector model and raster model. The fourth lecture "Spatial Data Acquisition Systems" will cover topics on how and where to acquire spatial data and how to produce your own spatial data. The fifth lecture "Spatial Data Analysis", will make learners to have brief taste of how to extract useful and valuable information from spatial data. More advanced algorithms for spatial analysis will be covered in the fifth module. In the sixth lecture "Geovisualization and Information Delivery", learners will understand powerful aspects as well as negative potentials of cartographic representations as a communication media of spatial phenomenon.

**完成時間為 2 小時**

**6 個視頻**

**2 個閱讀材料**

**1 個練習**

**完成時間為 2 小時**

## Spatial DBMS and Big Data Systems

The fourth module is entitled to "Spatial DBMS and Big Data Systems", which covers two disciplines related to spatial data science, and will make learners understand how to use DBMS and Big Data Systems to manage spatial data and spatial big data. This module is composed of six lectures. The first two lectures will cover DBMS and Spatial DBMS, and the rest of the lectures will cover Big Data Systems. The first lecture "Database Management System (DBMS)" will introduce powerful functionalities of DBMS and related features, and limitations of conventional Relational DBMS for spatial data. The second lecture "Spatial DBMS" focuses on the difference of spatial DBMS from conventional DBMS, and new features to manage spatial data. The third lecture will give learners a brief overview of Big Data Systems and the current paradigm - MapReduce. The fourth lecture will cover Hadoop MapReduce, Hadoop Distributed File System (HDFS), Hadoop YARN, as an implementation of MapReduce paradigm, and also will present the first example of spatial big data processing using Hadoop MapReduce. The fifth lecture will introduce Hadoop ecosystem and show how to utilize Hadoop tools such as Hive, Pig, Sqoop, and HBase for spatial big data processing. The last lecture "Spatial Big Data System" will introduce two Hadoop tools for spatial big data - Spatial Hadoop and GIS Tools for Hadoop, and review their pros and cons for spatial big data management and processing.

**完成時間為 2 小時**

**6 個視頻**

**1 個閱讀材料**

**1 個練習**

## 審閱

### 來自SPATIAL DATA SCIENCE AND APPLICATIONS的熱門評論

Great course. It helps I have a background in both Data Science and Geographic Information Science, but still found it equally interesting and challenging! I would highly recommend this course.

Really interesting course, well structured. Including practical work ( setting up the tools, writing code or conducting some analysis) would have made of it the best MOOC ever made.

very insightful and impacting session laced with applicable examples and contemporary issues. Thank you coursera. Thank you Yonsei University.

This was a great course as it was highly insightful, however, the course will be more impacting if you introduce a hand on session. Thank you

## 常見問題

我什么时候能够访问课程视频和作业？

我购买证书后会得到什么？

Is financial aid available?

還有其他問題嗎？請訪問 學生幫助中心。