What are some of the most popular data science tools, how do you use them, and what are their features? In this course, you'll learn about Jupyter Notebooks, RStudio IDE, Apache Zeppelin and Data Science Experience. You will learn about what each tool is used for, what programming languages they can execute, their features and limitations. With the tools hosted in the cloud on Cognitive Class Labs, you will be able to test each tool and follow instructions to run simple code in Python, R or Scala. To end the course, you will create a final project with a Jupyter Notebook on IBM Data Science Experience and demonstrate your proficiency preparing a notebook, writing Markdown, and sharing your work with your peers.
課程信息
學生職業成果
36%
39%
19%
學生職業成果
36%
39%
19%
提供方

IBM
IBM offers a wide range of technology and consulting services; a broad portfolio of middleware for collaboration, predictive analytics, software development and systems management; and the world's most advanced servers and supercomputers. Utilizing its business consulting, technology and R&D expertise, IBM helps clients become "smarter" as the planet becomes more digitally interconnected. IBM invests more than $6 billion a year in R&D, just completing its 21st year of patent leadership. IBM Research has received recognition beyond any commercial technology research organization and is home to 5 Nobel Laureates, 9 US National Medals of Technology, 5 US National Medals of Science, 6 Turing Awards, and 10 Inductees in US Inventors Hall of Fame.
教學大綱 - 您將從這門課程中學到什麼
Data Scientist's Toolkit
This week, you will get an overview of the programming languages commonly used, including Python, R, Scala, and SQL. You’ll be introduced to the open source and commercial data science tools available. You’ll also learn about the packages, APIs, data sets and models frequently used by data scientists.
Open Source Tools
This week, you will learn about three popular tools used in data science: GitHub, Jupyter Notebooks, and RStudio IDE. You will become familiar with the features of each tool, and what makes these tools so popular among data scientists today.
IBM Tools for Data Science
This week, you will learn about an enterprise-ready data science platform by IBM, called Watson Studio. You'll learn about some of the features and capabilities of what data scientists use in the industry. You’ll also learn about other IBM tools used to support data science projects, such as IBM Watson Knowledge Catalog, Data Refinery, and the SPSS Modeler.
Final Assignment: Create and Share Your Jupyter Notebook
This week, you will demonstrate your skills by creating and configuring a Jupyter Notebook. As part of your grade for this course, you will share your Jupyter Notebook with your peers for review.
審閱
來自TOOLS FOR DATA SCIENCE的熱門評論
Tools are fantastic and will make a significant contribution to my education. Videos need to be updated for changes to Watson Studios. Support from IBM on their cloud services should also be improved.
The course video contents and the tools versions are not the same.There are some significant differences .Videos should be updated.In general the course is a good fundamental course about the tools.
Some of the lab assignments had instructions that didn't line up with how the programs actually worked. This was particularly the case for modular flow where auto-numerics seemed impossible to use.
To the contrast of other reviews, I find the content very well bifurcated and fed to the learners. The course very easily digestable and I have had a great amount of fun learning it.. Go for it!!!!
常見問題
我什么时候能够访问课程视频和作业?
我订阅此证书后会得到什么?
完成课程后,我会获得大学学分吗?
還有其他問題嗎?請訪問 學生幫助中心。