課程信息
36,615 次近期查看

100% 在線

立即開始,按照自己的計劃學習。

可靈活調整截止日期

根據您的日程表重置截止日期。

初級

You will need mathematical and statistical knowledge and skills at least at high-school level.

完成時間大約為21 小時

建議:5 Weeks of study, 5-6 hours per week...

英語(English)

字幕:英語(English)

您將學到的內容有

  • Check

    Define and explain the key concepts of data clustering

  • Check

    Demonstrate understanding of the key constructs and features of the Python language.

  • Check

    Implement in Python the principle steps of the K-means algorithm.

  • Check

    Design and execute a whole data clustering workflow and interpret the outputs.

您將獲得的技能

K-Means ClusteringMachine LearningProgramming in Python

100% 在線

立即開始,按照自己的計劃學習。

可靈活調整截止日期

根據您的日程表重置截止日期。

初級

You will need mathematical and statistical knowledge and skills at least at high-school level.

完成時間大約為21 小時

建議:5 Weeks of study, 5-6 hours per week...

英語(English)

字幕:英語(English)

教學大綱 - 您將從這門課程中學到什麼

1
完成時間為 7 小時

Week 1: Foundations of Data Science: K-means Clustering in Python

This week we will introduce you to the course and to the team who will be guiding you through the course over the next 5 weeks. The aim of this week's material is to gently introduce you to Data Science through some real-world examples of where Data Science is used, and also by highlighting some of the main concepts involved....
9 個視頻 (總計 22 分鐘), 4 個測驗
9 個視頻
Introduction to Data Science2分鐘
What is Data?1分鐘
Types of Data1分鐘
Machine Learning3分鐘
Supervised vs. Unsupervised Learning2分鐘
K-means Clustering4分鐘
Preparing your Data1分鐘
A Real World Dataset53
4 個練習
Types of Data - Review Information15分鐘
Supervised vs. Unsupervised - Review Information15分鐘
K-means Clustering - Review Information30分鐘
Week 1 Summative Assessment40分鐘
2
完成時間為 4 小時

Week 2: Means and Deviations in Mathematics and Python

...
11 個視頻 (總計 37 分鐘), 2 個閱讀材料, 11 個測驗
11 個視頻
2.1 - Introduction to Mathematical Concepts of Data Clustering1分鐘
2.2 - Mean of One Dimensional Lists2分鐘
2.3 - Variance and Standard Deviation3分鐘
2.4 Jupyter Notebooks6分鐘
2.5 Variables4分鐘
2.6 Lists4分鐘
2.7 Computing the Mean3分鐘
2.8 Better Lists: Numpy3分鐘
2.9 Computing the Standard Deviation6分鐘
Week 2 Conclusion31
2 個閱讀材料
Python Style Guide10分鐘
Numpy and Array Creation20分鐘
10 個練習
Population vs Sample - Review Information5分鐘
Mean of One Dimensional Lists - Review Information3分鐘
Variance and Standard Deviation - Review Information4分鐘
Jupyter Notebooks - Review Information20分鐘
Variables - Review Information10分鐘
Lists - Review Information10分鐘
Computing the Mean - Review Information10分鐘
Better Lists - Review Information10分鐘
Computing the Standard Deviation - Review Information10分鐘
Week 2 Summative Assessment40分鐘
3
完成時間為 3 小時

Week 3: Moving from One to Two Dimensional Data

...
16 個視頻 (總計 53 分鐘), 3 個閱讀材料, 15 個測驗
16 個視頻
3.1 Multidimensional Data Points and Features2分鐘
3.2 Multidimensional Mean2分鐘
3.3 Dispersion: Multidimensional Variables3分鐘
3.4 Distance Metrics5分鐘
3.5 Normalisation1分鐘
3.6 Outliers1分鐘
3.7 Basic Plotting2分鐘
3.7a Storing 2D Coordinates in a Single Data Structure6分鐘
3.8 Multidimensional Mean4分鐘
3.9 Adding Graphical Overlays5分鐘
3.10 Calculating the Distance to the Mean3分鐘
3.11 List Comprehension3分鐘
3.12 Normalisation in Python5分鐘
3.13 Outliers and Plotting Normalised Data2分鐘
Week 3 Conclusion30
3 個閱讀材料
Matplotlib Scatter Plot Documentation20分鐘
Matplotlib Patches Documentation10分鐘
List Comprehension Documentation20分鐘
15 個練習
Multidimensional Data Points and Features - Review Information3分鐘
Multidimensional Mean - Review Information3分鐘
Dispersion: Multidimensional Variables - Review Information5分鐘
Distance Metrics - Review Information6分鐘
Normalisation - Review Information3分鐘
Outliers - Review Information4分鐘
Basic Plotting - Review Information5分鐘
Storing 2D Coordinates - Review Information4分鐘
Multidimensional Mean - Review Information4分鐘
Adding Graphical Overlays - Review Information6分鐘
Calculating Distance - Review Information6分鐘
List Comprehension - Review Information4分鐘
Normalisation in Python - Review Information4分鐘
Outliers - Review Information2分鐘
Week 3 Summative Assessment25分鐘
4
完成時間為 5 小時

Week 4: Introducing Pandas and Using K-means to Analyse Data

...
8 個視頻 (總計 37 分鐘), 6 個閱讀材料, 8 個測驗
8 個視頻
4.1: Using the Pandas Library to Read csv Files5分鐘
4.1a: Sorting and Filtering Data Using Pandas8分鐘
4.1b: Labelling Points on a Graph4分鐘
4.1c: Labelling all the Points on a Graph3分鐘
4.2: Eyeballing the Data5分鐘
4.3: Using K-means to Interpret the Data8分鐘
Week 4: Conclusion35
6 個閱讀材料
Week 4 Code Resources5分鐘
Pandas Read_CSV Function15分鐘
More Pandas Library Documentation10分鐘
The Pyplot Text Function10分鐘
For Loops in Python10分鐘
Documentation for sklearn.cluster.KMeans10分鐘
7 個練習
Using the Pandas Library to Read csv Files - Review Information5分鐘
Sorting and Filtering Data Using Pandas - Review Information10分鐘
Labelling Points on a Graph - Review Information5分鐘
Labelling all the Points on a Graph - Review Information5分鐘
Eyeballing the Data - Review Information5分鐘
Using K-means to Interpret the Data - Review Information5分鐘
Week 4 Summative Assessment40分鐘
5
完成時間為 10 小時

Week 5: A Data Clustering Project

...
9 個視頻 (總計 30 分鐘), 4 個閱讀材料, 6 個測驗
9 個視頻
5.1 Can a Machine Detect Fake Notes?1分鐘
5.2 Working for a Client4分鐘
5.3 How to Organize Work on Your Project3分鐘
5.4 Dealing With Difficulties3分鐘
5.5 No Data no Data Science: Introduction of the Dataset4分鐘
5.6 Modelling4分鐘
5.7 Presenting the Project Results3分鐘
5.8 Concluding Remarks1分鐘
4 個閱讀材料
The Banknote Authentication Dataset10分鐘
Week 5 Code Resource - the Dataset for our Project10分鐘
Saving plt.scatter Outputs as Figures10分鐘
Additional Recommended Reading for Week 55分鐘
3 個練習
What Would You Advise? - Review Information10分鐘
Python - Review Information4分鐘
Week 5 Summative Assessment30分鐘

講師

Avatar

Dr Matthew Yee-King

Lecturer
Computing Department, Goldsmiths, University of London
Avatar

Dr Betty Fyn-Sydney

Lecturer in Mathematics
Department of Computing, Goldsmiths, University of London
Avatar

Dr Jamie A Ward

Lecturer in Computer Science
Department of Computing, Goldsmiths, University of London
Avatar

Dr Larisa Soldatova

Reader in Data Science
Department of Computing, Goldsmiths, University of London

關於 伦敦大学

The University of London is a federal University which includes 18 world leading Colleges. Our distance learning programmes were founded in 1858 and have enriched the lives of thousands of students, delivering high quality University of London degrees wherever our students are across the globe. Our alumni include 7 Nobel Prize winners. Today, we are a global leader in distance and flexible study, offering degree programmes to over 50,000 students in over 180 countries. To find out more about studying for one of our degrees where you are, visit www.london.ac.uk...

關於 伦敦大学金匠学院

Championing research-rich degrees that provoke thought, stretch the imagination and tap into tomorrow’s world, at Goldsmiths we’re asking the questions that matter now in subjects as diverse as the arts and humanities, social sciences, cultural studies, computing, and entrepreneurial business and management. We are a community defined by its people: innovative in spirit, analytical in approach and open to all....

常見問題

  • 注册以便获得证书后,您将有权访问所有视频、测验和编程作业(如果适用)。只有在您的班次开课之后,才可以提交和审阅同学互评作业。如果您选择在不购买的情况下浏览课程,可能无法访问某些作业。

  • 您购买证书后,将有权访问所有课程材料,包括评分作业。完成课程后,您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容,可以免费旁听课程。

還有其他問題嗎?請訪問 學生幫助中心