關於此 專項課程

79,652 次近期查看
Be at the forefront of the autonomous driving industry. With market researchers predicting a $42-billion market and more than 20 million self-driving cars on the road by 2025, the next big job boom is right around the corner. This Specialization gives you a comprehensive understanding of state-of-the-art engineering practices used in the self-driving car industry. You'll get to interact with real data sets from an autonomous vehicle (AV)―all through hands-on projects using the open source simulator CARLA. Throughout your courses, you’ll hear from industry experts who work at companies like Oxbotica and Zoox as they share insights about autonomous technology and how that is powering job growth within the field. You’ll learn from a highly realistic driving environment that features 3D pedestrian modelling and environmental conditions. When you complete the Specialization successfully, you’ll be able to build your own self-driving software stack and be ready to apply for jobs in the autonomous vehicle industry. It is recommended that you have some background in linear algebra, probability, statistics, calculus, physics, control theory, and Python programming. You will need these specifications in order to effectively run the CARLA simulator: Windows 7 64-bit (or later) or Ubuntu 16.04 (or later), Quad-core Intel or AMD processor (2.5 GHz or faster), NVIDIA GeForce 470 GTX or AMD Radeon 6870 HD series card or higher, 8 GB RAM, and OpenGL 3 or greater (for Linux computers).

100% 在線課程

立即開始,按照自己的計劃學習。

靈活的計劃

設置並保持靈活的截止日期。

高級

完成時間大約為5 個月

建議 6 小時/週

英語(English)

字幕:英語(English), 西班牙語(Spanish)

100% 在線課程

立即開始,按照自己的計劃學習。

靈活的計劃

設置並保持靈活的截止日期。

高級

完成時間大約為5 個月

建議 6 小時/週

英語(English)

字幕:英語(English), 西班牙語(Spanish)

專項課程的運作方式

加入課程

Coursera 專項課程是幫助您掌握一門技能的一系列課程。若要開始學習,請直接註冊專項課程,或預覽專項課程並選擇您要首先開始學習的課程。當您訂閱專項課程的部分課程時,您將自動訂閱整個專項課程。您可以只完成一門課程,您可以隨時暫停學習或結束訂閱。訪問您的學生面板,跟踪您的課程註冊情況和進度。

實踐項目

每個專項課程都包括實踐項目。您需要成功完成這個(些)項目才能完成專項課程並獲得證書。如果專項課程中包括單獨的實踐項目課程,則需要在開始之前完成其他所有課程。

獲得證書

在結束每門課程並完成實踐項目之後,您會獲得一個證書,您可以向您的潛在雇主展示該證書並在您的職業社交網絡中分享。

how it works

此專項課程包含 4 門課程

課程1

課程 1

Introduction to Self-Driving Cars

4.8
659 個評分
127 條評論
課程2

課程 2

State Estimation and Localization for Self-Driving Cars

4.7
259 個評分
43 條評論
課程3

課程 3

Visual Perception for Self-Driving Cars

4.6
158 個評分
25 條評論
課程4

課程 4

Motion Planning for Self-Driving Cars

4.8
117 個評分
19 條評論

關於 多伦多大学

Established in 1827, the University of Toronto is one of the world’s leading universities, renowned for its excellence in teaching, research, innovation and entrepreneurship, as well as its impact on economic prosperity and social well-being around the globe. ...

審閱

來自自动驾驶汽车的熱門評論

常見問題

  • 可以!点击您感兴趣的课程卡开始注册即可。注册并完成课程后,您可以获得可共享的证书,或者您也可以旁听该课程免费查看课程资料。如果您订阅的课程是某专项课程的一部分,系统会自动为您订阅完整的专项课程。访问您的学生面板,跟踪您的进度。

  • 此课程完全在线学习,无需到教室现场上课。您可以通过网络或移动设备随时随地访问课程视频、阅读材料和作业。

  • 此专项课程不提供大学学分,但部分大学可能会选择接受专项课程证书作为学分。查看您的合作院校了解详情。

  • Each course is intended to take 4-6 weeks, roughly one week per module. At this pace, the entire Specialization will take you 4-6 months to complete.

  • See the list of prerequisites provided in Module 0 of Course 1. The most important ones are familiarity with linear algebra, calculus, probability theory, and kinematic and dynamic modeling. Some exposure to computer vision, AI or robotics is also useful.

  • The courses are mostly independent and self-paced, so it is possible to mix the order of the courses based on your interests. The only exception is that Course 1 provides a valuable overview of an autonomous vehicle in terms of hardware and software, so we recommend starting with Course 1.

  • You will be able to develop basic implementations of all the main components of an autonomous car software stack, including localization and mapping solutions, object detection and drivable surface detection methods, motion planning approaches and vehicle controllers. You'll be ready to enter the industry with a strong overview of the core requirements and challenges in self-driving development, and you'll have experience with simulating these vehicles in the CARLA simulator.

還有其他問題嗎?請訪問 學生幫助中心