關於此 專項課程
73,669 次近期查看

100% 在線課程

立即開始,按照自己的計劃學習。

靈活的計劃

設置並保持靈活的截止日期。

高級

完成時間大約為4 個月

建議 8 小時/週

英語(English)

字幕:英語(English)

您將學到的內容有

  • Check

    Understand the detailed architecture and components of a self-driving car software stack

  • Check

    Implement methods for static and dynamic object detection, localization and mapping, behaviour and maneuver planning, and vehicle control

  • Check

    Use realistic vehicle physics, complete sensor suite: camera, LIDAR, GPS/INS, wheel odometry, depth map, semantic segmentation, object bounding boxes

  • Check

    Demonstrate skills in CARLA and build programs with Python

100% 在線課程

立即開始,按照自己的計劃學習。

靈活的計劃

設置並保持靈活的截止日期。

高級

完成時間大約為4 個月

建議 8 小時/週

英語(English)

字幕:英語(English)

專項課程 的運作方式

加入課程

Coursera 專項課程是幫助您掌握一門技能的一系列課程。若要開始學習,請直接註冊專項課程,或預覽專項課程並選擇您要首先開始學習的課程。當您訂閱專項課程的部分課程時,您將自動訂閱整個專項課程。您可以只完成一門課程,您可以隨時暫停學習或結束訂閱。訪問您的學生面板,跟踪您的課程註冊情況和進度。

實踐項目

每個專項課程都包括實踐項目。您需要成功完成這個(些)項目才能完成專項課程並獲得證書。如果專項課程中包括單獨的實踐項目課程,則需要在開始之前完成其他所有課程。

獲得證書

在結束每門課程並完成實踐項目之後,您會獲得一個證書,您可以向您的潛在雇主展示該證書並在您的職業社交網絡中分享。

how it works

此專項課程包含 4 門課程

課程1

Introduction to Self-Driving Cars

4.7
262 個評分
45 個審閱

Welcome to Introduction to Self-Driving Cars, the first course in University of Toronto’s Self-Driving Cars Specialization. This course will introduce you to the terminology, design considerations and safety assessment of self-driving cars. By the end of this course, you will be able to: - Understand commonly used hardware used for self-driving cars - Identify the main components of the self-driving software stack - Program vehicle modelling and control - Analyze the safety frameworks and current industry practices for vehicle development For the final project in this course, you will develop control code to navigate a self-driving car around a racetrack in the CARLA simulation environment. You will construct longitudinal and lateral dynamic models for a vehicle and create controllers that regulate speed and path tracking performance using Python. You’ll test the limits of your control design and learn the challenges inherent in driving at the limit of vehicle performance. This is an advanced course, intended for learners with a background in mechanical engineering, computer and electrical engineering, or robotics. To succeed in this course, you should have programming experience in Python 3.0, familiarity with Linear Algebra (matrices, vectors, matrix multiplication, rank, Eigenvalues and vectors and inverses), Statistics (Gaussian probability distributions), Calculus and Physics (forces, moments, inertia, Newton's Laws). You will also need certain hardware and software specifications in order to effectively run the CARLA simulator: Windows 7 64-bit (or later) or Ubuntu 16.04 (or later), Quad-core Intel or AMD processor (2.5 GHz or faster), NVIDIA GeForce 470 GTX or AMD Radeon 6870 HD series card or higher, 8 GB RAM, and OpenGL 3 or greater (for Linux computers).

...
課程2

State Estimation and Localization for Self-Driving Cars

4.5
78 個評分
14 個審閱

Welcome to State Estimation and Localization for Self-Driving Cars, the second course in University of Toronto’s Self-Driving Cars Specialization. We recommend you take the first course in the Specialization prior to taking this course. This course will introduce you to the different sensors and how we can use them for state estimation and localization in a self-driving car. By the end of this course, you will be able to: - Understand the key methods for parameter and state estimation used for autonomous driving, such as the method of least-squares - Develop a model for typical vehicle localization sensors, including GPS and IMUs - Apply extended and unscented Kalman Filters to a vehicle state estimation problem - Understand LIDAR scan matching and the Iterative Closest Point algorithm - Apply these tools to fuse multiple sensor streams into a single state estimate for a self-driving car For the final project in this course, you will implement the Error-State Extended Kalman Filter (ES-EKF) to localize a vehicle using data from the CARLA simulator. This is an advanced course, intended for learners with a background in mechanical engineering, computer and electrical engineering, or robotics. To succeed in this course, you should have programming experience in Python 3.0, familiarity with Linear Algebra (matrices, vectors, matrix multiplication, rank, Eigenvalues and vectors and inverses), Statistics (Gaussian probability distributions), Calculus and Physics (forces, moments, inertia, Newton's Laws).

...
課程3

Visual Perception for Self-Driving Cars

4.4
47 個評分
6 個審閱

Welcome to Visual Perception for Self-Driving Cars, the third course in University of Toronto’s Self-Driving Cars Specialization. This course will introduce you to the main perception tasks in autonomous driving, static and dynamic object detection, and will survey common computer vision methods for robotic perception. By the end of this course, you will be able to work with the pinhole camera model, perform intrinsic and extrinsic camera calibration, detect, describe and match image features and design your own convolutional neural networks. You'll apply these methods to visual odometry, object detection and tracking, and semantic segmentation for drivable surface estimation. These techniques represent the main building blocks of the perception system for self-driving cars. For the final project in this course, you will develop algorithms that identify bounding boxes for objects in the scene, and define the boundaries of the drivable surface. You'll work with synthetic and real image data, and evaluate your performance on a realistic dataset. This is an advanced course, intended for learners with a background in computer vision and deep learning. To succeed in this course, you should have programming experience in Python 3.0, and familiarity with Linear Algebra (matrices, vectors, matrix multiplication, rank, Eigenvalues and vectors and inverses).

...
課程4

Motion Planning for Self-Driving Cars

4.7
26 個評分
4 個審閱

Welcome to Motion Planning for Self-Driving Cars, the fourth course in University of Toronto’s Self-Driving Cars Specialization. This course will introduce you to the main planning tasks in autonomous driving, including mission planning, behavior planning and local planning. By the end of this course, you will be able to find the shortest path over a graph or road network using Dijkstra's and the A* algorithm, use finite state machines to select safe behaviors to execute, and design optimal, smooth paths and velocity profiles to navigate safely around obstacles while obeying traffic laws. You'll also build occupancy grid maps of static elements in the environment and learn how to use them for efficient collision checking. This course will give you the ability to construct a full self-driving planning solution, to take you from home to work while behaving like a typical driving and keeping the vehicle safe at all times. For the final project in this course, you will implement a hierarchical motion planner to navigate through a sequence of scenarios in the CARLA simulator, including avoiding a vehicle parked in your lane, following a lead vehicle and safely navigating an intersection. You'll face real-world randomness and need to work to ensure your solution is robust to changes in the environment. This is an intermediate course, intended for learners with some background in robotics, and it builds on the models and controllers devised in Course 1 of this specialization. To succeed in this course, you should have programming experience in Python 3.0, and familiarity with Linear Algebra (matrices, vectors, matrix multiplication, rank, Eigenvalues and vectors and inverses) and calculus (ordinary differential equations, integration).

...

講師

Avatar

Steven Waslander

Associate Professor
Aerospace Studies
Avatar

Jonathan Kelly

Assistant Professor
Aerospace Studies

關於 多伦多大学

Established in 1827, the University of Toronto is one of the world’s leading universities, renowned for its excellence in teaching, research, innovation and entrepreneurship, as well as its impact on economic prosperity and social well-being around the globe. ...

常見問題

  • 可以!点击您感兴趣的课程卡开始注册即可。注册并完成课程后,您可以获得可共享的证书,或者您也可以旁听该课程免费查看课程资料。如果您订阅的课程是某专项课程的一部分,系统会自动为您订阅完整的专项课程。访问您的学生面板,跟踪您的进度。

  • 此课程完全在线学习,无需到教室现场上课。您可以通过网络或移动设备随时随地访问课程视频、阅读材料和作业。

  • 此专项课程不提供大学学分,但部分大学可能会选择接受专项课程证书作为学分。查看您的合作院校了解详情。

  • Each course is intended to take 4-6 weeks, roughly one week per module. At this pace, the entire Specialization will take you 4-6 months to complete.

  • See the list of prerequisites provided in Module 0 of Course 1. The most important ones are familiarity with linear algebra, calculus, probability theory, and kinematic and dynamic modeling. Some exposure to computer vision, AI or robotics is also useful.

  • The courses are mostly independent and self-paced, so it is possible to mix the order of the courses based on your interests. The only exception is that Course 1 provides a valuable overview of an autonomous vehicle in terms of hardware and software, so we recommend starting with Course 1.

  • You will be able to develop basic implementations of all the main components of an autonomous car software stack, including localization and mapping solutions, object detection and drivable surface detection methods, motion planning approaches and vehicle controllers. You'll be ready to enter the industry with a strong overview of the core requirements and challenges in self-driving development, and you'll have experience with simulating these vehicles in the CARLA simulator.

還有其他問題嗎?請訪問 學生幫助中心