About this 專項課程
100% 在線課程

100% 在線課程

立即開始,按照自己的計劃學習。
靈活的計劃

靈活的計劃

設置並保持靈活的截止日期。
初級

初級

完成時間(小時)

完成時間大約為3 個月

建議 6 小時/週
可選語言

英語(English)

字幕:英語(English), 中文(簡體), 格魯吉亞語, 愛沙尼亞語, 德語(German), 泰語, 日語, 尼泊爾語...

您將獲得的技能

Ggplot2Data Visualization (DataViz)R ProgrammingObject-Oriented Programming (OOP)
100% 在線課程

100% 在線課程

立即開始,按照自己的計劃學習。
靈活的計劃

靈活的計劃

設置並保持靈活的截止日期。
初級

初級

完成時間(小時)

完成時間大約為3 個月

建議 6 小時/週
可選語言

英語(English)

字幕:英語(English), 中文(簡體), 格魯吉亞語, 愛沙尼亞語, 德語(German), 泰語, 日語, 尼泊爾語...

How the 專項課程 Works

加入課程

Coursera 專項課程是幫助您掌握一門技能的一系列課程。若要開始學習,請直接註冊專項課程,或預覽專項課程並選擇您要首先開始學習的課程。當您訂閱專項課程的部分課程時,您將自動訂閱整個專項課程。您可以只完成一門課程,您可以隨時暫停學習或結束訂閱。訪問您的學生面板,跟踪您的課程註冊情況和進度。

實踐項目

每個專項課程都包括實踐項目。您需要成功完成這個(些)項目才能完成專項課程並獲得證書。如果專項課程中包括單獨的實踐項目課程,則需要在開始之前完成其他所有課程。

獲得證書

在結束每門課程並完成實踐項目之後,您會獲得一個證書,您可以向您的潛在雇主展示該證書並在您的職業社交網絡中分享。

how it works

此專項課程包含 5 門課程

課程1

The R Programming Environment

4.4
708 個評分
189 個審閱
This course provides a rigorous introduction to the R programming language, with a particular focus on using R for software development in a data science setting. Whether you are part of a data science team or working individually within a community of developers, this course will give you the knowledge of R needed to make useful contributions in those settings. As the first course in the Specialization, the course provides the essential foundation of R needed for the following courses. We cover basic R concepts and language fundamentals, key concepts like tidy data and related "tidyverse" tools, processing and manipulation of complex and large datasets, handling textual data, and basic data science tasks. Upon completing this course, learners will have fluency at the R console and will be able to create tidy datasets from a wide range of possible data sources....
課程2

Advanced R Programming

4.3
323 個評分
81 個審閱
This course covers advanced topics in R programming that are necessary for developing powerful, robust, and reusable data science tools. Topics covered include functional programming in R, robust error handling, object oriented programming, profiling and benchmarking, debugging, and proper design of functions. Upon completing this course you will be able to identify and abstract common data analysis tasks and to encapsulate them in user-facing functions. Because every data science environment encounters unique data challenges, there is always a need to develop custom software specific to your organization’s mission. You will also be able to define new data types in R and to develop a universe of functionality specific to those data types to enable cleaner execution of data science tasks and stronger reusability within a team....
課程3

Building R Packages

4.2
145 個評分
38 個審閱
Writing good code for data science is only part of the job. In order to maximizing the usefulness and reusability of data science software, code must be organized and distributed in a manner that adheres to community-based standards and provides a good user experience. This course covers the primary means by which R software is organized and distributed to others. We cover R package development, writing good documentation and vignettes, writing robust software, cross-platform development, continuous integration tools, and distributing packages via CRAN and GitHub. Learners will produce R packages that satisfy the criteria for submission to CRAN....
課程4

Building Data Visualization Tools

3.9
105 個評分
25 個審閱
The data science revolution has produced reams of new data from a wide variety of new sources. These new datasets are being used to answer new questions in way never before conceived. Visualization remains one of the most powerful ways draw conclusions from data, but the influx of new data types requires the development of new visualization techniques and building blocks. This course provides you with the skills for creating those new visualization building blocks. We focus on the ggplot2 framework and describe how to use and extend the system to suit the specific needs of your organization or team. Upon completing this course, learners will be able to build the tools needed to visualize a wide variety of data types and will have the fundamentals needed to address new data types as they come about....

講師

Avatar

Roger D. Peng, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health
Avatar

Brooke Anderson

Assistant Professor, Environmental & Radiological Health Sciences
Colorado State University

關於 Johns Hopkins University

The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world....

常見問題

  • 可以!点击您感兴趣的课程卡开始注册即可。注册并完成课程后,您可以获得可共享的证书,或者您也可以旁听该课程免费查看课程资料。如果您订阅的课程是某专项课程的一部分,系统会自动为您订阅完整的专项课程。访问您的学生面板,跟踪您的进度。

  • 此课程完全在线学习,无需到教室现场上课。您可以通过网络或移动设备随时随地访问课程视频、阅读材料和作业。

  • 此专项课程不提供大学学分,但部分大学可能会选择接受专项课程证书作为学分。查看您的合作院校了解详情。

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 3-6 months.

  • Some programming experience (in any language) is recommended. We also suggest a working knowledge of mathematics up to algebra (neither calculus or linear algebra are required).

  • We strongly recommend that you take the courses in order.

  • You will be able to use R to create new data science tools as part of a team or a community of developers. You will be able to build R packages, develop custom visualizations, and apply modern software development tools to create reusable code for solving data science problems.

還有其他問題嗎?請訪問 學生幫助中心