關於此 專項課程

100% 在線課程





Basic knowledge of at least one programming language: C++, Java, Python, C, C#, Javascript, Haskell, Kotlin, Ruby, Rust, Scala. Basic knowledge of discrete mathematics: proof by induction, proof by contradiction.

完成時間大約為6 個月

建議 7 小時/週


字幕:英語(English), 西班牙語(Spanish)


DebuggingSoftware TestingAlgorithmsData StructureComputer Programming

100% 在線課程





Basic knowledge of at least one programming language: C++, Java, Python, C, C#, Javascript, Haskell, Kotlin, Ruby, Rust, Scala. Basic knowledge of discrete mathematics: proof by induction, proof by contradiction.

完成時間大約為6 個月

建議 7 小時/週


字幕:英語(English), 西班牙語(Spanish)

專項課程 的運作方式


Coursera 專項課程是幫助您掌握一門技能的一系列課程。若要開始學習,請直接註冊專項課程,或預覽專項課程並選擇您要首先開始學習的課程。當您訂閱專項課程的部分課程時,您將自動訂閱整個專項課程。您可以只完成一門課程,您可以隨時暫停學習或結束訂閱。訪問您的學生面板,跟踪您的課程註冊情況和進度。





how it works

此專項課程包含 6 門課程


Algorithmic Toolbox

4,474 個評分
947 個審閱
The course covers basic algorithmic techniques and ideas for computational problems arising frequently in practical applications: sorting and searching, divide and conquer, greedy algorithms, dynamic programming. We will learn a lot of theory: how to sort data and how it helps for searching; how to break a large problem into pieces and solve them recursively; when it makes sense to proceed greedily; how dynamic programming is used in genomic studies. You will practice solving computational problems, designing new algorithms, and implementing solutions efficiently (so that they run in less than a second)....


1,967 個評分
328 個審閱
A good algorithm usually comes together with a set of good data structures that allow the algorithm to manipulate the data efficiently. In this course, we consider the common data structures that are used in various computational problems. You will learn how these data structures are implemented in different programming languages and will practice implementing them in our programming assignments. This will help you to understand what is going on inside a particular built-in implementation of a data structure and what to expect from it. You will also learn typical use cases for these data structures. A few examples of questions that we are going to cover in this class are the following: 1. What is a good strategy of resizing a dynamic array? 2. How priority queues are implemented in C++, Java, and Python? 3. How to implement a hash table so that the amortized running time of all operations is O(1) on average? 4. What are good strategies to keep a binary tree balanced? You will also learn how services like Dropbox manage to upload some large files instantly and to save a lot of storage space!...

Algorithms on Graphs

1,039 個評分
173 個審閱
If you have ever used a navigation service to find optimal route and estimate time to destination, you've used algorithms on graphs. Graphs arise in various real-world situations as there are road networks, computer networks and, most recently, social networks! If you're looking for the fastest time to get to work, cheapest way to connect set of computers into a network or efficient algorithm to automatically find communities and opinion leaders in Facebook, you're going to work with graphs and algorithms on graphs. In this course, you will first learn what a graph is and what are some of the most important properties. Then you'll learn several ways to traverse graphs and how you can do useful things while traversing the graph in some order. We will then talk about shortest paths algorithms — from the basic ones to those which open door for 1000000 times faster algorithms used in Google Maps and other navigational services. You will use these algorithms if you choose to work on our Fast Shortest Routes industrial capstone project. We will finish with minimum spanning trees which are used to plan road, telephone and computer networks and also find applications in clustering and approximate algorithms....


556 個評分
103 個審閱
World and internet is full of textual information. We search for information using textual queries, we read websites, books, e-mails. All those are strings from the point of view of computer science. To make sense of all that information and make search efficient, search engines use many string algorithms. Moreover, the emerging field of personalized medicine uses many search algorithms to find disease-causing mutations in the human genome....

Advanced Algorithms and Complexity

299 個評分
65 個審閱
You've learned the basic algorithms now and are ready to step into the area of more complex problems and algorithms to solve them. Advanced algorithms build upon basic ones and use new ideas. We will start with networks flows which are used in more typical applications such as optimal matchings, finding disjoint paths and flight scheduling as well as more surprising ones like image segmentation in computer vision. We then proceed to linear programming with applications in optimizing budget allocation, portfolio optimization, finding the cheapest diet satisfying all requirements and many others. Next we discuss inherently hard problems for which no exact good solutions are known (and not likely to be found) and how to solve them in practice. We finish with a soft introduction to streaming algorithms that are heavily used in Big Data processing. Such algorithms are usually designed to be able to process huge datasets without being able even to store a dataset....

Genome Assembly Programming Challenge

109 個評分
28 個審閱
In Spring 2011, thousands of people in Germany were hospitalized with a deadly disease that started as food poisoning with bloody diarrhea and often led to kidney failure. It was the beginning of the deadliest outbreak in recent history, caused by a mysterious bacterial strain that we will refer to as E. coli X. Soon, German officials linked the outbreak to a restaurant in Lübeck, where nearly 20% of the patrons had developed bloody diarrhea in a single week. At this point, biologists knew that they were facing a previously unknown pathogen and that traditional methods would not suffice – computational biologists would be needed to assemble and analyze the genome of the newly emerged pathogen. To investigate the evolutionary origin and pathogenic potential of the outbreak strain, researchers started a crowdsourced research program. They released bacterial DNA sequencing data from one of a patient, which elicited a burst of analyses carried out by computational biologists on four continents. They even used GitHub for the project: https://github.com/ehec-outbreak-crowdsourced/BGI-data-analysis/wiki The 2011 German outbreak represented an early example of epidemiologists collaborating with computational biologists to stop an outbreak. In this Genome Assembly Programming Challenge, you will follow in the footsteps of the bioinformaticians investigating the outbreak by developing a program to assemble the genome of the E. coli X from millions of overlapping substrings of the E.coli X genome....



Daniel M Kane

Assistant Professor
Department of Computer Science and Engineering / Department of Mathematics

Neil Rhodes

Adjunct Faculty
Computer Science and Engineering

Pavel Pevzner

Department of Computer Science and Engineering

Michael Levin

Computer Science

Alexander S. Kulikov

Visiting Professor
Department of Computer Science and Engineering


Industry Partner Logo #0
Industry Partner Logo #1
Industry Partner Logo #2

關於 加州大学圣地亚哥分校

UC San Diego is an academic powerhouse and economic engine, recognized as one of the top 10 public universities by U.S. News and World Report. Innovation is central to who we are and what we do. Here, students learn that knowledge isn't just acquired in the classroom—life is their laboratory....

關於 国立高等经济大学

National Research University - Higher School of Economics (HSE) is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communicamathematics, engineering, and more. Learn more on www.hse.ru...


  • 可以!点击您感兴趣的课程卡开始注册即可。注册并完成课程后,您可以获得可共享的证书,或者您也可以旁听该课程免费查看课程资料。如果您订阅的课程是某专项课程的一部分,系统会自动为您订阅完整的专项课程。访问您的学生面板,跟踪您的进度。

  • 此课程完全在线学习,无需到教室现场上课。您可以通过网络或移动设备随时随地访问课程视频、阅读材料和作业。

  • You will be able to apply the right algorithms and data structures in your day-to-day work and write programs that work in some cases many orders of magnitude faster. You'll be able to solve algorithmic problems like those used in the technical interviews at Google, Facebook, Microsoft, Yandex, etc. If you do data science, you'll be able to significantly increase the speed of some of your experiments. You'll also have a completed Capstone either in Bioinformatics or in the Shortest Paths in Road Networks and Social Networks that you can demonstrate to potential employers.

  • 1. Basic knowledge of at least one programming language: C++, Java, Python, C, C#, Javascript, Haskell, Kotlin, Ruby, Rust, Scala.

    We expect you to be able to implement programs that: 1) read data from the standard input (in most cases, the input is a sequence of integers); 2) compute the result (in most cases, a few loops are enough for this); 3) print the result to the standard output. For each programming challenge in this course, we provide starter solutions in C++, Java, and Python. The best way to check whether your programming skills are enough to go through problems in this specialization is to solve two problems from the first week. If you are able to pass them (after reading our tutorials), then you will definitely be able to pass the course.

    2. Basic knowledge of discrete mathematics: proof by induction, proof by contradiction.

    Knowledge of discrete mathematics is necessary for analyzing algorithms (proving correctness, estimating running time) and for algorithmic thinking in general. If you want to refresh your discrete mathematics skills, we encourage you to go through our partner specialization — Introduction to Discrete Mathematics for Computer Science (https://www.coursera.org/specializations/discrete-mathematics). It teaches the basics of discrete mathematics in try-this-before-we-explain-everything approach: you will be solving many interactive puzzles that were carefully designed to allow you to invent many of the important ideas and concepts yoursel

  • We believe that learning the theory behind algorithms (like in most Algorithms 101 courses taught at 1000s universities) is important but not sufficient for a professional computer scientist today. This specialization combines the theory of algorithms with many programming challenges. In contrast with many Algorithms 101 courses, you will implement over 100 algorithmic problems in the programming language of your choice. And you will see yourself that the best way to understand an algorithm is to implement it!

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 6-8 months.

  • Each course in the Specialization is offered on a regular schedule, with sessions starting about once per month. If you don't complete a course on the first try, you can easily transfer to the next session, and your completed work and grades will carry over.

  • We recommend taking the courses in the order presented, as each subsequent course will build on material from previous courses.

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • The lectures in this specialization will be self-contained. Most lectures will be based on the bestselling textbook "Algorithms" co-authored by Sanjoy Dasgupta from University of California at San Diego as well as Christos Papadimitriou and Umesh Vazirani from University of California at Berkeley. In addition to UCSD and Berkeley, the textbook has been adopted in over 100 top universities and is available on Internet.

還有其他問題嗎?請訪問 學生幫助中心