About this 專項課程
100% 在線課程

100% 在線課程

立即開始,按照自己的計劃學習。
靈活的計劃

靈活的計劃

設置並保持靈活的截止日期。
初級

初級

完成時間(小時)

完成時間大約為5 個月

建議 6 小時/週
可選語言

英語(English)

字幕:英語(English), 韓語, 印地語, 波斯語...

您將獲得的技能

Big DataNeo4jMongodbApache Spark
100% 在線課程

100% 在線課程

立即開始,按照自己的計劃學習。
靈活的計劃

靈活的計劃

設置並保持靈活的截止日期。
初級

初級

完成時間(小時)

完成時間大約為5 個月

建議 6 小時/週
可選語言

英語(English)

字幕:英語(English), 韓語, 印地語, 波斯語...

How the 專項課程 Works

加入課程

Coursera 專項課程是幫助您掌握一門技能的一系列課程。若要開始學習,請直接註冊專項課程,或預覽專項課程並選擇您要首先開始學習的課程。當您訂閱專項課程的部分課程時,您將自動訂閱整個專項課程。您可以只完成一門課程,您可以隨時暫停學習或結束訂閱。訪問您的學生面板,跟踪您的課程註冊情況和進度。

實踐項目

每個專項課程都包括實踐項目。您需要成功完成這個(些)項目才能完成專項課程並獲得證書。如果專項課程中包括單獨的實踐項目課程,則需要在開始之前完成其他所有課程。

獲得證書

在結束每門課程並完成實踐項目之後,您會獲得一個證書,您可以向您的潛在雇主展示該證書並在您的職業社交網絡中分享。

how it works

此專項課程包含 6 門課程

課程1

Introduction to Big Data

4.5
4,310 個評分
1,108 個審閱
Interested in increasing your knowledge of the Big Data landscape? This course is for those new to data science and interested in understanding why the Big Data Era has come to be. It is for those who want to become conversant with the terminology and the core concepts behind big data problems, applications, and systems. It is for those who want to start thinking about how Big Data might be useful in their business or career. It provides an introduction to one of the most common frameworks, Hadoop, that has made big data analysis easier and more accessible -- increasing the potential for data to transform our world! At the end of this course, you will be able to: * Describe the Big Data landscape including examples of real world big data problems including the three key sources of Big Data: people, organizations, and sensors. * Explain the V’s of Big Data (volume, velocity, variety, veracity, valence, and value) and why each impacts data collection, monitoring, storage, analysis and reporting. * Get value out of Big Data by using a 5-step process to structure your analysis. * Identify what are and what are not big data problems and be able to recast big data problems as data science questions. * Provide an explanation of the architectural components and programming models used for scalable big data analysis. * Summarize the features and value of core Hadoop stack components including the YARN resource and job management system, the HDFS file system and the MapReduce programming model. * Install and run a program using Hadoop! This course is for those new to data science. No prior programming experience is needed, although the ability to install applications and utilize a virtual machine is necessary to complete the hands-on assignments. Hardware Requirements: (A) Quad Core Processor (VT-x or AMD-V support recommended), 64-bit; (B) 8 GB RAM; (C) 20 GB disk free. How to find your hardware information: (Windows): Open System by clicking the Start button, right-clicking Computer, and then clicking Properties; (Mac): Open Overview by clicking on the Apple menu and clicking “About This Mac.” Most computers with 8 GB RAM purchased in the last 3 years will meet the minimum requirements.You will need a high speed internet connection because you will be downloading files up to 4 Gb in size. Software Requirements: This course relies on several open-source software tools, including Apache Hadoop. All required software can be downloaded and installed free of charge. Software requirements include: Windows 7+, Mac OS X 10.10+, Ubuntu 14.04+ or CentOS 6+ VirtualBox 5+....
課程2

Big Data Modeling and Management Systems

4.3
1,690 個評分
280 個審閱
Once you’ve identified a big data issue to analyze, how do you collect, store and organize your data using Big Data solutions? In this course, you will experience various data genres and management tools appropriate for each. You will be able to describe the reasons behind the evolving plethora of new big data platforms from the perspective of big data management systems and analytical tools. Through guided hands-on tutorials, you will become familiar with techniques using real-time and semi-structured data examples. Systems and tools discussed include: AsterixDB, HP Vertica, Impala, Neo4j, Redis, SparkSQL. This course provides techniques to extract value from existing untapped data sources and discovering new data sources. At the end of this course, you will be able to: * Recognize different data elements in your own work and in everyday life problems * Explain why your team needs to design a Big Data Infrastructure Plan and Information System Design * Identify the frequent data operations required for various types of data * Select a data model to suit the characteristics of your data * Apply techniques to handle streaming data * Differentiate between a traditional Database Management System and a Big Data Management System * Appreciate why there are so many data management systems * Design a big data information system for an online game company This course is for those new to data science. Completion of Intro to Big Data is recommended. No prior programming experience is needed, although the ability to install applications and utilize a virtual machine is necessary to complete the hands-on assignments. Refer to the specialization technical requirements for complete hardware and software specifications. Hardware Requirements: (A) Quad Core Processor (VT-x or AMD-V support recommended), 64-bit; (B) 8 GB RAM; (C) 20 GB disk free. How to find your hardware information: (Windows): Open System by clicking the Start button, right-clicking Computer, and then clicking Properties; (Mac): Open Overview by clicking on the Apple menu and clicking “About This Mac.” Most computers with 8 GB RAM purchased in the last 3 years will meet the minimum requirements.You will need a high speed internet connection because you will be downloading files up to 4 Gb in size. Software Requirements: This course relies on several open-source software tools, including Apache Hadoop. All required software can be downloaded and installed free of charge (except for data charges from your internet provider). Software requirements include: Windows 7+, Mac OS X 10.10+, Ubuntu 14.04+ or CentOS 6+ VirtualBox 5+....
課程3

Big Data Integration and Processing

4.4
1,182 個評分
262 個審閱
At the end of the course, you will be able to: *Retrieve data from example database and big data management systems *Describe the connections between data management operations and the big data processing patterns needed to utilize them in large-scale analytical applications *Identify when a big data problem needs data integration *Execute simple big data integration and processing on Hadoop and Spark platforms This course is for those new to data science. Completion of Intro to Big Data is recommended. No prior programming experience is needed, although the ability to install applications and utilize a virtual machine is necessary to complete the hands-on assignments. Refer to the specialization technical requirements for complete hardware and software specifications. Hardware Requirements: (A) Quad Core Processor (VT-x or AMD-V support recommended), 64-bit; (B) 8 GB RAM; (C) 20 GB disk free. How to find your hardware information: (Windows): Open System by clicking the Start button, right-clicking Computer, and then clicking Properties; (Mac): Open Overview by clicking on the Apple menu and clicking “About This Mac.” Most computers with 8 GB RAM purchased in the last 3 years will meet the minimum requirements.You will need a high speed internet connection because you will be downloading files up to 4 Gb in size. Software Requirements: This course relies on several open-source software tools, including Apache Hadoop. All required software can be downloaded and installed free of charge (except for data charges from your internet provider). Software requirements include: Windows 7+, Mac OS X 10.10+, Ubuntu 14.04+ or CentOS 6+ VirtualBox 5+....
課程4

Machine Learning With Big Data

4.5
983 個評分
193 個審閱
Want to make sense of the volumes of data you have collected? Need to incorporate data-driven decisions into your process? This course provides an overview of machine learning techniques to explore, analyze, and leverage data. You will be introduced to tools and algorithms you can use to create machine learning models that learn from data, and to scale those models up to big data problems. At the end of the course, you will be able to: • Design an approach to leverage data using the steps in the machine learning process. • Apply machine learning techniques to explore and prepare data for modeling. • Identify the type of machine learning problem in order to apply the appropriate set of techniques. • Construct models that learn from data using widely available open source tools. • Analyze big data problems using scalable machine learning algorithms on Spark. Software Requirements: Cloudera VM, KNIME, Spark...

講師

Avatar

Ilkay Altintas

Chief Data Science Officer
San Diego Supercomputer Center
Avatar

Amarnath Gupta

Director, Advanced Query Processing Lab
San Diego Supercomputer Center (SDSC)
Avatar

Mai Nguyen

Lead for Data Analytics
San Diego Supercomputer Center

行業合作夥伴

Industry Partner Logo #0

關於 University of California San Diego

UC San Diego is an academic powerhouse and economic engine, recognized as one of the top 10 public universities by U.S. News and World Report. Innovation is central to who we are and what we do. Here, students learn that knowledge isn't just acquired in the classroom—life is their laboratory....

常見問題

  • 可以!点击您感兴趣的课程卡开始注册即可。注册并完成课程后,您可以获得可共享的证书,或者您也可以旁听该课程免费查看课程资料。如果您订阅的课程是某专项课程的一部分,系统会自动为您订阅完整的专项课程。访问您的学生面板,跟踪您的进度。

  • 此课程完全在线学习,无需到教室现场上课。您可以通过网络或移动设备随时随地访问课程视频、阅读材料和作业。

  • 此专项课程不提供大学学分,但部分大学可能会选择接受专项课程证书作为学分。查看您的合作院校了解详情。

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in about 7 months.

  • This course is for those new to data science. No prior programming experience is needed, although the ability to install applications and utilize a virtual machine is necessary to complete the hands-on assignments.

  • This specialization relies on several open-source software tools, including Apache Hadoop. All required software can be downloaded and installed free of charge (except for data charges from your internet provider). Software requirements include: Windows 7+, Mac OS X 10.10+, Ubuntu 14.04+ or CentOS 6+ VirtualBox 5+

  • We recommend taking the courses in the order presented, as each subsequent course will build on material from previous courses.

  • You will be able to process, analyze, and interpret massive and complex data using current big data technologies. You will have the basic skills to model, manage and process big data of various sources and formats.

還有其他問題嗎?請訪問 學生幫助中心