- Data Science
- Artificial Neural Network
- Artificial Intelligence (AI)
- Machine Learning
- Random Forest
- regression
- Statistical Hypothesis Testing
- medical data
- Python Programming
- PCA
- identifying specieis
- predictions in science
AI for Scientific Research 專項課程
在数据科学领域工作. Use artificial intelligence to discover and test hypothesis.
提供方


您將學到的內容有
How to use AI in scientific situations to discover trends and patterns within datasets
The complete machine learning process
Use artificial intelligence to predict sequences in datasets
Employ artificial intelligence techniques to test hypothesis in Python
您將獲得的技能
關於此 專項課程
應用的學習項目
Each course in this specialization contains practice labs built on the Coursera lab platform. You will use the provided libraries and models to perform machine learning and AI instructions that help answer important questions in your dataset. The final course is a capstone project where you will compare genome sequences of COVID-19 mutations to identify potential areas a drug therapy can look to target. It begins with the basic setup and walks through the entire analysis process.
There are no specific background requirements; however, it is very helpful to understand scientific methods, mathematics and general computer logic.
There are no specific background requirements; however, it is very helpful to understand scientific methods, mathematics and general computer logic.
專項課程的運作方式
加入課程
Coursera 專項課程是幫助您掌握一門技能的一系列課程。若要開始學習,請直接註冊專項課程,或預覽專項課程並選擇您要首先開始學習的課程。當您訂閱專項課程的部分課程時,您將自動訂閱整個專項課程。您可以只完成一門課程,您可以隨時暫停學習或結束訂閱。訪問您的學生面板,跟踪您的課程註冊情況和進度。
實踐項目
每個專項課程都包括實踐項目。您需要成功完成這個(些)項目才能完成專項課程並獲得證書。如果專項課程中包括單獨的實踐項目課程,則需要在開始之前完成其他所有課程。
獲得證書
在結束每門課程並完成實踐項目之後,您會獲得一個證書,您可以向您的潛在雇主展示該證書並在您的職業社交網絡中分享。

此專項課程包含 4 門課程
Introduction to Data Science and scikit-learn in Python
This course will teach you how to leverage the power of Python and artificial intelligence to create and test hypothesis. We'll start for the ground up, learning some basic Python for data science before diving into some of its richer applications to test our created hypothesis. We'll learn some of the most important libraries for exploratory data analysis (EDA) and machine learning such as Numpy, Pandas, and Sci-kit learn. After learning some of the theory (and math) behind linear regression, we'll go through and full pipeline of reading data, cleaning it, and applying a regression model to estimate the progression of diabetes. By the end of the course, you'll apply a classification model to predict the presence/absence of heart disease from a patient's health data.
Machine Learning Models in Science
This course is aimed at anyone interested in applying machine learning techniques to scientific problems. In this course, we'll learn about the complete machine learning pipeline, from reading in, cleaning, and transforming data to running basic and advanced machine learning algorithms. We'll start with data preprocessing techniques, such as PCA and LDA. Then, we'll dive into the fundamental AI algorithms: SVMs and K-means clustering. Along the way, we'll build our mathematical and programming toolbox to prepare ourselves to work with more complicated models. Finally, we'll explored advanced methods such as random forests and neural networks. Throughout the way, we'll be using medical and astronomical datasets. In the final project, we'll apply our skills to compare different machine learning models in Python.
Neural Networks and Random Forests
In this course, we will build on our knowledge of basic models and explore advanced AI techniques. We’ll start with a deep dive into neural networks, building our knowledge from the ground up by examining the structure and properties. Then we’ll code some simple neural network models and learn to avoid overfitting, regularization, and other hyper-parameter tricks. After a project predicting likelihood of heart disease given health characteristics, we’ll move to random forests. We’ll describe the differences between the two techniques and explore their differing origins in detail. Finally, we’ll complete a project predicting similarity between health patients using random forests.
Capstone Project: Advanced AI for Drug Discovery
In this capstone project course, we'll compare genome sequences of COVID-19 mutations to identify potential areas a drug therapy can look to target. The first step in drug discovery involves identifying target subsequences of theirs genome to target. We'll start by comparing the genomes of virus mutations to look for similarities. Then, we'll perform PCA to cut down our number of dimensions and identify the most common features. Next, we'll use K-means clustering in Python to find the optimal number of groups and trace the lineage of the virus. Finally, we'll predict similarity between the sequences and use this to pick a target subsequence. Throughout the course, each section will consist of a programming assignment coupled with a guide video and helpful hints. By the end, you'll be well on your way to discovering ways to combat disease with genome sequencing.
提供方

LearnQuest
LearnQuest is the preferred training partner to the world’s leading companies, organizations, and government agencies. Our team boasts 20+ years of experience designing, developing and delivering a full suite industry-leading technology education classes and training solutions across the globe. Our trainers, equipped with expert industry experience and an unparalleled commitment to quality, facilitate classes that are offered in various delivery formats so our clients can obtain the training they need when and where they need it.
常見問題
退款政策是如何规定的?
我可以只注册一门课程吗?
有助学金吗?
我可以免费学习课程吗?
此课程是 100% 在线学习吗?是否需要现场参加课程?
完成专项课程需要多长时间?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
完成专项课程后我会获得大学学分吗?
What will I be able to do upon completing the Specialization?
還有其他問題嗎?請訪問 學生幫助中心。