Naive Bayes 101: Resume Selection with Machine Learning

提供方
Coursera Project Network
在此指導項目中,您將:

Create a pipeline to remove stop-words, punctuation, and perform tokenization

Understand the theory and intuition behind Naive Bayes classifiers

Train a Naive Bayes Classifier and assess its performance

Clock2 hours
Intermediate中級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

In this project, we will build a Naïve Bayes Classifier to predict whether a given resume text is flagged or not. Our training data consist of 125 resumes with 33 flagged resumes and 92 non flagged resumes. This project could be practically used to screen resumes in companies.

您要培養的技能

  • Data Cleansing
  • Machine Learning
  • NLP
  • Artificial Intelligence(AI)
  • Computer Science

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Task 1: Understand the Problem Statement and Business Case

  2. Task 2: Import libraries and datasets

  3. Task 3: Perform exploratory data analysis

  4. Task 4: Perform data cleaning

  5. Task 5: Visualize cleaned datasets

  6. Task 6: Prepare the data by applying count vectorization

  7. Task 7: Understand the intuition behind Naive Bayes Classifier - Part #1

  8. Task 8: Understand the intuition behind Naive Bayes Classifier - Part #2

  9. Task 9: Train a Naive Bayes classifier model

  10. Task 10: Assess trained model performance

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心