Chevron Left
返回到 机器学习基础:案例研究

學生對 华盛顿大学 提供的 机器学习基础:案例研究 的評價和反饋

4.6
12,182 個評分
2,916 條評論

課程概述

Do you have data and wonder what it can tell you? Do you need a deeper understanding of the core ways in which machine learning can improve your business? Do you want to be able to converse with specialists about anything from regression and classification to deep learning and recommender systems? In this course, you will get hands-on experience with machine learning from a series of practical case-studies. At the end of the first course you will have studied how to predict house prices based on house-level features, analyze sentiment from user reviews, retrieve documents of interest, recommend products, and search for images. Through hands-on practice with these use cases, you will be able to apply machine learning methods in a wide range of domains. This first course treats the machine learning method as a black box. Using this abstraction, you will focus on understanding tasks of interest, matching these tasks to machine learning tools, and assessing the quality of the output. In subsequent courses, you will delve into the components of this black box by examining models and algorithms. Together, these pieces form the machine learning pipeline, which you will use in developing intelligent applications. Learning Outcomes: By the end of this course, you will be able to: -Identify potential applications of machine learning in practice. -Describe the core differences in analyses enabled by regression, classification, and clustering. -Select the appropriate machine learning task for a potential application. -Apply regression, classification, clustering, retrieval, recommender systems, and deep learning. -Represent your data as features to serve as input to machine learning models. -Assess the model quality in terms of relevant error metrics for each task. -Utilize a dataset to fit a model to analyze new data. -Build an end-to-end application that uses machine learning at its core. -Implement these techniques in Python....

熱門審閱

BL
2016年10月16日

Very good overview of ML. The GraphLab api wasn't that bad, and also it was very wise of the instructors to allow the use of other ML packages. Overall i enjoyed it very much and also leaned very much

PM
2019年8月18日

The course was well designed and delivered by all the trainers with the help of case study and great examples.\n\nThe forums and discussions were really useful and helpful while doing the assignments.

篩選依據:

2451 - 机器学习基础:案例研究 的 2475 個評論(共 2,826 個)

創建者 Tina W

2019年4月2日

Good Intro course and familiarize yourself with iPython notebook.

創建者 sami j

2017年12月26日

pretty good - wish there was more info on the internals to models

創建者 Alexander P

2016年10月17日

Interesting intro class. Will very much leave you wanting more.

創建者 Paul B

2016年7月21日

Good introduction, the python quick description is short enough.

創建者 Pramod J

2020年10月17日

Contents are up to mark and very helpful in learning the course

創建者 Kunal B Y

2020年6月25日

it will be better if the videos are also updated to turi create

創建者 Mandar G

2020年5月31日

Both the Instructors were very good at providing the knowledge!

創建者 Anurag U

2016年11月2日

Its a good course for those who want to learn ML with Graph Lab

創建者 Ahmad B E

2017年12月5日

Good course for ML except it depends a lot on GraphLab Create.

創建者 James

2016年10月7日

dont really like the dependency with dato sframe or prop tools

創建者 Paolo s

2016年10月5日

It would be perfect if also cover a section on spark an mllib.

創建者 yangxiaoqi

2018年1月29日

可以在刚入门机器学习时候听一听这门课,能够知道机器学习在实际中如何应用的。但是要深入机器学习还是应当学学里面的数学知识的。

創建者 Johan M

2016年6月9日

Excellent course. Looking forward to the rest of the courses.

創建者 David B

2015年12月4日

A nice introduction to the various machine learning concepts.

創建者 P V P

2020年6月28日

its very basic just used a python module in the whole period

創建者 SOWMYA P

2020年6月3日

i understood many more in this course i understood properly.

創建者 kumar p

2015年10月15日

Nice for learners who want to jump start in machine learning

創建者 Swapnil A

2020年9月6日

Would have been a 5 start course if the content was updated

創建者 Bingyue Z

2020年10月9日

A bit superficial, better to merge with following courses

創建者 C M R

2020年8月4日

VERY GOOD TEACHING AND GREAT INFORMATION IN THE LECTURES.

創建者 Gopisetty k p

2016年6月24日

This is very good material for machine learning starters.

創建者 VJ

2015年11月16日

good material. good presentation skills of the instructor

創建者 João G B A V

2017年12月4日

Muito bom, os exemplos onlines poderiam ser interativos.

創建者 Milan C

2017年10月20日

Nice overview about different Machine Learning concepts.

創建者 Jjclof

2016年10月17日

Well-made.

Good teachers.

But a bit too simple. 4/5

Thanks.