Chevron Left
返回到 Machine Learning: Classification

學生對 华盛顿大学 提供的 Machine Learning: Classification 的評價和反饋

4.7
3,472 個評分
577 條評論

課程概述

Case Studies: Analyzing Sentiment & Loan Default Prediction In our case study on analyzing sentiment, you will create models that predict a class (positive/negative sentiment) from input features (text of the reviews, user profile information,...). In our second case study for this course, loan default prediction, you will tackle financial data, and predict when a loan is likely to be risky or safe for the bank. These tasks are an examples of classification, one of the most widely used areas of machine learning, with a broad array of applications, including ad targeting, spam detection, medical diagnosis and image classification. In this course, you will create classifiers that provide state-of-the-art performance on a variety of tasks. You will become familiar with the most successful techniques, which are most widely used in practice, including logistic regression, decision trees and boosting. In addition, you will be able to design and implement the underlying algorithms that can learn these models at scale, using stochastic gradient ascent. You will implement these technique on real-world, large-scale machine learning tasks. You will also address significant tasks you will face in real-world applications of ML, including handling missing data and measuring precision and recall to evaluate a classifier. This course is hands-on, action-packed, and full of visualizations and illustrations of how these techniques will behave on real data. We've also included optional content in every module, covering advanced topics for those who want to go even deeper! Learning Objectives: By the end of this course, you will be able to: -Describe the input and output of a classification model. -Tackle both binary and multiclass classification problems. -Implement a logistic regression model for large-scale classification. -Create a non-linear model using decision trees. -Improve the performance of any model using boosting. -Scale your methods with stochastic gradient ascent. -Describe the underlying decision boundaries. -Build a classification model to predict sentiment in a product review dataset. -Analyze financial data to predict loan defaults. -Use techniques for handling missing data. -Evaluate your models using precision-recall metrics. -Implement these techniques in Python (or in the language of your choice, though Python is highly recommended)....

熱門審閱

SM
2020年6月14日

A very deep and comprehensive course for learning some of the core fundamentals of Machine Learning. Can get a bit frustrating at times because of numerous assignments :P but a fun thing overall :)

SS
2016年10月15日

Hats off to the team who put the course together! Prof Guestrin is a great teacher. The course gave me in-depth knowledge regarding classification and the math and intuition behind it. It was fun!

篩選依據:

201 - Machine Learning: Classification 的 225 個評論(共 545 個)

創建者 clara c

2016年6月11日

This course was great! I really enjoyed it and learned a lot.

創建者 Yufeng X

2019年6月14日

The lecture is super. The exams could be more challenging-:)

創建者 Sarah W

2017年9月24日

Great course! Learned so much! So excited to use this stuff!

創建者 Tony T

2016年11月19日

funny and enthusiastic lecturer make a dry subject more fun.

創建者 Simbarashe M

2020年9月24日

l know a knew way to train the models taught in this course

創建者 Isaac B

2016年11月20日

Excellent course. Practical understanding of classification

創建者 Ali A

2016年3月21日

So far it is a mazing. I will rate at the end of the course

創建者 Kartik W

2020年9月19日

A must do course for all the machine learning enthusiasts.

創建者 Koen O

2017年4月14日

Excellent course for learning the basics on classification

創建者 Chao L

2017年3月31日

Nicely formatted. And it's quite intuitive and practical.

創建者 Patrick P

2016年11月28日

Very good and and informative to start with this subject.

創建者 vacous

2017年8月3日

very nice material covering the basic of classification.

創建者 Xuan Q

2017年2月13日

Super useful and a bit of challenging! Really enjoy it.

創建者 Carlos L

2016年6月10日

The contents are really clear and professors are great!

創建者 Freeze F

2016年6月7日

This lecture gave a great start for me into ML . :) :)

創建者 Sudip C

2016年5月3日

Very detailed, Liked optional sections also. Loved it.

創建者 Rodrigo T

2017年12月30日

Excellent course, i really like the general concepts

創建者 susmitha

2020年8月5日

Very clear and good explanation by both instructors

創建者 Dohyoung C

2019年6月3日

Great ...

I learned quite a lot about classification

創建者 Maxwell N M

2018年10月7日

Great Course!

Teachers are genius and awesome

Thanks

創建者 Norberto S

2016年10月9日

Excellent course with lots of practical exercises.

創建者 JOSE R

2017年11月18日

Very interesting. It's easy to understand. Thanks

創建者 Tuan L H

2016年12月6日

Great course, easy to follow, higly recommended!

創建者 Syed A u R

2016年8月11日

exceptional course. Carlos did an excellenet job

創建者 Mariano

2020年4月4日

very interesting and useful tools for real life