Chevron Left
返回到 使用 Python 进行数据分析

學生對 IBM 提供的 使用 Python 进行数据分析 的評價和反饋

4.7
14,460 個評分
2,147 條評論

課程概述

Learn how to analyze data using Python. This course will take you from the basics of Python to exploring many different types of data. You will learn how to prepare data for analysis, perform simple statistical analysis, create meaningful data visualizations, predict future trends from data, and more! Topics covered: 1) Importing Datasets 2) Cleaning the Data 3) Data frame manipulation 4) Summarizing the Data 5) Building machine learning Regression models 6) Building data pipelines Data Analysis with Python will be delivered through lecture, lab, and assignments. It includes following parts: Data Analysis libraries: will learn to use Pandas, Numpy and Scipy libraries to work with a sample dataset. We will introduce you to pandas, an open-source library, and we will use it to load, manipulate, analyze, and visualize cool datasets. Then we will introduce you to another open-source library, scikit-learn, and we will use some of its machine learning algorithms to build smart models and make cool predictions. If you choose to take this course and earn the Coursera course certificate, you will also earn an IBM digital badge. LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate....

熱門審閱

SC
2020年5月5日

I started this course without any knowledge on Data Analysis with Python, and by the end of the course I was able to understand the basics of Data Analysis, usage of different libraries and functions.

RP
2019年4月19日

perfect for beginner level. all the concepts with code and parameter wise have been explained excellently. overall best course in making anyone eager to learn from basics to handle advances with ease.

篩選依據:

2026 - 使用 Python 进行数据分析 的 2050 個評論(共 2,141 個)

創建者 林tanya

2019年12月27日

the lab is extremely useful, however, videos are too short

創建者 Michael A D R

2019年11月1日

Extremely interesting BUT it gets long and hard to follow.

創建者 Nihal N

2019年4月18日

not in depth.... needs more clarity on a variety of topics

創建者 Alejandro A S

2019年7月25日

Experimented a lot of problems to complete the assignment

創建者 Troy S

2019年3月14日

Quizzes are too easy. Don't even need to watch the videos

創建者 Anurag P

2020年1月18日

Mostly theoretical; very little to implement on our own.

創建者 Pulkit D

2019年6月29日

Please update and explain Rigid Regression a little more

創建者 Appa R M

2019年10月24日

The kernal is stuck for some questions and its annoying

創建者 Qing L

2020年1月26日

Kurs gut organisiert aber

die Fragen sehr oberflächlich

創建者 Jakubina K

2018年12月19日

It would be more useful if labs were be rated as well.

創建者 Ankit K S

2020年1月29日

It would be nice if the course had more assignments.

創建者 Bhanu S

2019年4月28日

It was difficult to retain the knowledge imparted.

創建者 Alton M

2019年6月8日

The course requires more interactive programming.

創建者 Xiangyu L

2019年1月19日

There are lots of mistakes throughout the courses

創建者 Abdul M A

2019年4月17日

Not very interactive with fewer help to learners

創建者 Ashwin G

2019年4月26日

Too fast and could have included more examples.

創建者 Gerhard E

2019年2月12日

Copy of videos, not a fan of tools used in labs

創建者 Yasmin A

2020年2月3日

Un cours riche et adéquat pour les débutants

創建者 Hiro H

2019年11月27日

Very nice course. It gives you what you need

創建者 Brian S

2020年3月29日

Notebooks are sloppy, with typos and errors

創建者 Fariha M

2020年9月28日

The course didn't seem challenging to me.

創建者 Sachin L

2019年9月26日

More examples and detailed explanation

創建者 Nilanjana

2019年7月12日

More examples and code examples needed

創建者 Hamed A

2019年4月8日

The course needs a final assignment!

創建者 piyush d

2019年12月6日

exercises could have been better.