Chevron Left
返回到 使用 Excel 分析数据

學生對 杜克大学 提供的 使用 Excel 分析数据 的評價和反饋

4.2
3,642 個評分
869 條評論

課程概述

Important: The focus of this course is on math - specifically, data-analysis concepts and methods - not on Excel for its own sake. We use Excel to do our calculations, and all math formulas are given as Excel Spreadsheets, but we do not attempt to cover Excel Macros, Visual Basic, Pivot Tables, or other intermediate-to-advanced Excel functionality. This course will prepare you to design and implement realistic predictive models based on data. In the Final Project (module 6) you will assume the role of a business data analyst for a bank, and develop two different predictive models to determine which applicants for credit cards should be accepted and which rejected. Your first model will focus on minimizing default risk, and your second on maximizing bank profits. The two models should demonstrate to you in a practical, hands-on way the idea that your choice of business metric drives your choice of an optimal model. The second big idea this course seeks to demonstrate is that your data-analysis results cannot and should not aim to eliminate all uncertainty. Your role as a data-analyst is to reduce uncertainty for decision-makers by a financially valuable increment, while quantifying how much uncertainty remains. You will learn to calculate and apply to real-world examples the most important uncertainty measures used in business, including classification error rates, entropy of information, and confidence intervals for linear regression. All the data you need is provided within the course, all assignments are designed to be done in MS Excel, and you will learn enough Excel to complete all assignments. The course will give you enough practice with Excel to become fluent in its most commonly used business functions, and you’ll be ready to learn any other Excel functionality you might need in the future (module 1). The course does not cover Visual Basic or Pivot Tables and you will not need them to complete the assignments. All advanced concepts are demonstrated in individual Excel spreadsheet templates that you can use to answer relevant questions. You will emerge with substantial vocabulary and practical knowledge of how to apply business data analysis methods based on binary classification (module 2), information theory and entropy measures (module 3), and linear regression (module 4 and 5), all using no software tools more complex than Excel....

熱門審閱

JE
2015年10月30日

The course deserves a 5-star rating because: (1) content is relevant, (2) the professor is concise and possesses great teaching skills, and (3) the learning modules are applicable to daily problems.

PW
2020年10月13日

The course was excellent. A little difficult and overwhelming at times but as long as you stayed the course the professors gave you every opportunity to succeed. Thank you for your time professor.

篩選依據:

301 - 使用 Excel 分析数据 的 325 個評論(共 848 個)

創建者 Haoran L

2019年12月20日

Dr. Egger is the best

創建者 Stepan P

2015年11月14日

Great Course! Thanks)

創建者 Samir C

2015年10月22日

This is just awesome.

創建者 Zhou J

2016年2月6日

很棒的组织

数学与Excel结合的非常密切

創建者 Shivakumar

2020年6月15日

the Course was good

創建者 Meet L

2019年9月5日

Excellent detailing

創建者 RUSI L

2017年4月27日

Very useful course.

創建者 OKAI-BONSU B

2016年1月15日

good course for all

創建者 Armaghan

2015年12月14日

very good training.

創建者 Phoebe K

2018年7月2日

very insightful!!!

創建者 Dengjiahao

2016年2月9日

Very good Courses!

創建者 Luis M G

2015年11月22日

Excelente temario!

創建者 Zaigal R I

2018年9月4日

So cool course :)

創建者 Alok S

2016年8月18日

Good Presentation

創建者 Kyriaki B

2016年2月12日

Very interesting!

創建者 Sultan A

2016年2月9日

Very nice course.

創建者 Rega V

2015年11月20日

Really Help me :)

創建者 shivanand E

2021年1月20日

Very Good Course

創建者 DHIRENDRA K B

2019年10月28日

Excellent course

創建者 Muhammad b A

2017年8月24日

Very challenging

創建者 JuanEnCoursera

2016年12月4日

Very good course

創建者 charu

2016年7月15日

very nice stuff.

創建者 Kuljeet K

2016年5月27日

Very good course

創建者 嚴楷鈞

2016年4月17日

highly recommend

創建者 Adriana B Q

2016年2月6日

So far so good!!