社会科学的方法和统计 專項課程

阿姆斯特丹大学

關於此 專項課程

Identify interesting questions, analyze data sets, and correctly interpret results to make solid, evidence-based decisions.
This Specialization covers research methods, design and statistical analysis for social science research questions. In the final Capstone Project, you’ll apply the skills you learned by developing your own research question, gathering data, and analyzing and reporting on the results using statistical methods.

立即開始，按照自己的計劃學習。

設置並保持靈活的截止日期。

建議 6 小時/週

字幕：英語（English）, 中文（簡體）, 阿拉伯語（Arabic）...

StatisticsStatistical InferenceR ProgrammingQualitative Research

立即開始，按照自己的計劃學習。

設置並保持靈活的截止日期。

建議 6 小時/週

字幕：英語（English）, 中文（簡體）, 阿拉伯語（Arabic）...

Coursera 專項課程是幫助您掌握一門技能的一系列課程。若要開始學習，請直接註冊專項課程，或預覽專項課程並選擇您要首先開始學習的課程。當您訂閱專項課程的部分課程時，您將自動訂閱整個專項課程。您可以只完成一門課程，您可以隨時暫停學習或結束訂閱。訪問您的學生面板，跟踪您的課程註冊情況和進度。

每個專項課程都包括實踐項目。您需要成功完成這個（些）項目才能完成專項課程並獲得證書。如果專項課程中包括單獨的實踐項目課程，則需要在開始之前完成其他所有課程。

在結束每門課程並完成實踐項目之後，您會獲得一個證書，您可以向您的潛在雇主展示該證書並在您的職業社交網絡中分享。

4.7

955 個評分

•

316 個審閱

Discover the principles of solid scientific methods in the behavioral and social sciences. Join us and learn to separate sloppy science from solid research!
This course will cover the fundamental principles of science, some history and philosophy of science, research designs, measurement, sampling and ethics. The course is comparable to a university level introductory course on quantitative research methods in the social sciences, but has a strong focus on research integrity. We will use examples from sociology, political sciences, educational sciences, communication sciences and psychology....

4.5

519 個評分

•

172 個審閱

In this course you will be introduced to the basic ideas behind the qualitative research in social science. You will learn about data collection, description, analysis and interpretation in qualitative research. Qualitative research often involves an iterative process. We will focus on the ingredients required for this process: data collection and analysis.
You won't learn how to use qualitative methods by just watching video's, so we put much stress on collecting data through observation and interviewing and on analysing and interpreting the collected data in other assignments.
Obviously, the most important concepts in qualitative research will be discussed, just as we will discuss quality criteria, good practices, ethics, writing some methods of analysis, and mixing methods.
We hope to take away some prejudice, and enthuse many students for qualitative research....

4.7

1,892 個評分

•

509 個審閱

Understanding statistics is essential to understand research in the social and behavioral sciences. In this course you will learn the basics of statistics; not just how to calculate them, but also how to evaluate them. This course will also prepare you for the next course in the specialization - the course Inferential Statistics.
In the first part of the course we will discuss methods of descriptive statistics. You will learn what cases and variables are and how you can compute measures of central tendency (mean, median and mode) and dispersion (standard deviation and variance). Next, we discuss how to assess relationships between variables, and we introduce the concepts correlation and regression.
The second part of the course is concerned with the basics of probability: calculating probabilities, probability distributions and sampling distributions. You need to know about these things in order to understand how inferential statistics work.
The third part of the course consists of an introduction to methods of inferential statistics - methods that help us decide whether the patterns we see in our data are strong enough to draw conclusions about the underlying population we are interested in. We will discuss confidence intervals and significance tests.
You will not only learn about all these statistical concepts, you will also be trained to calculate and generate these statistics yourself using freely available statistical software....

4.4

276 個評分

•

77 個審閱

Inferential statistics are concerned with making inferences based on relations found in the sample, to relations in the population. Inferential statistics help us decide, for example, whether the differences between groups that we see in our data are strong enough to provide support for our hypothesis that group differences exist in general, in the entire population.
We will start by considering the basic principles of significance testing: the sampling and test statistic distribution, p-value, significance level, power and type I and type II errors. Then we will consider a large number of statistical tests and techniques that help us make inferences for different types of data and different types of research designs. For each individual statistical test we will consider how it works, for what data and design it is appropriate and how results should be interpreted. You will also learn how to perform these tests using freely available software.
For those who are already familiar with statistical testing: We will look at z-tests for 1 and 2 proportions, McNemar's test for dependent proportions, t-tests for 1 mean (paired differences) and 2 means, the Chi-square test for independence, Fisher’s exact test, simple regression (linear and exponential) and multiple regression (linear and logistic), one way and factorial analysis of variance, and non-parametric tests (Wilcoxon, Kruskal-Wallis, sign test, signed-rank test, runs test)....

A modern university with a rich history, the University of Amsterdam
(UvA) traces its roots back to 1632, when the Golden Age school Athenaeum
Illustre was established to train students in trade and philosophy. Today,
with more than 30,000 students, 5,000 staff and 285 study programmes
(Bachelor's and Master's), many of which are taught in English, and a
budget of more than 600 million euros, it is one of the largest
comprehensive universities in Europe. It is a member of the League of
European Research Universities and also maintains intensive contact with
other leading research universities around the world....

退款政策是如何规定的？

我可以只注册一门课程吗？

可以！点击您感兴趣的课程卡开始注册即可。注册并完成课程后，您可以获得可共享的证书，或者您也可以旁听该课程免费查看课程资料。如果您订阅的课程是某专项课程的一部分，系统会自动为您订阅完整的专项课程。访问您的学生面板，跟踪您的进度。

有助学金吗？

我可以免费学习课程吗？

此课程是 100% 在线学习吗？是否需要现场参加课程？

此课程完全在线学习，无需到教室现场上课。您可以通过网络或移动设备随时随地访问课程视频、阅读材料和作业。

完成专项课程后我会获得大学学分吗？

此专项课程不提供大学学分，但部分大学可能会选择接受专项课程证书作为学分。查看您的合作院校了解详情。

How long does it take to complete the Research Methods and Statistics in Social Science Specialization?

Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 10 months.

此专项课程中每门课程的开课频率为多久？

Each course in the Specialization is offered on demand, and may be taken at any time.

What background knowledge is necessary?

A basic understanding of scientific principles and research methods may be helpful, but is not required. Only very basic math skills are required, you should be able to perform: addition, subtraction, multiplication, calculation of square, square root, exponents and logarithms.

Do I need to take the courses in a specific order?

We recommend taking the courses in the order presented, as each subsequent course will build on material from previous courses.

Will I earn university credit for completing the Research Methods and Statistics Specialization?

Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

What will I be able to do upon completing the Research Methods and Statistics Specialization?

At the end of this Specialization, you will be performing your own statistical analyses using the programming language R, with no prior knowledge of programming. Learners who complete the Research Methods and Statistics for Social Science Specialization will learn more about scientific rigor and integrity. You’ll have the methods, statistics and research skills required to complete a typical Masters program in the Social Sciences or the Johns Hopkins Data Science Specialization, and also be ready for more advanced courses on big data or multivariate statistics.

還有其他問題嗎？請訪問 學生幫助中心。