返回到 Linear Regression and Modeling

4.7

星

1,414 個評分

•

258 條評論

This course introduces simple and multiple linear regression models. These models allow you to assess the relationship between variables in a data set and a continuous response variable. Is there a relationship between the physical attractiveness of a professor and their student evaluation scores? Can we predict the test score for a child based on certain characteristics of his or her mother? In this course, you will learn the fundamental theory behind linear regression and, through data examples, learn to fit, examine, and utilize regression models to examine relationships between multiple variables, using the free statistical software R and RStudio....

TM

Jul 22, 2020

A great primer on linear regression with labs that help to establish understanding and a project that is focused enough not to be overwhelming, and allows the learner to play around with the concepts

PK

May 24, 2017

Very good course taught by Dr. Mine who is as always a very good teacher. The videos are very eloquent and easy to understand. Highly recommend it if you are looking for a basic refresher course.

篩選依據：

創建者 Yu Y

•Oct 27, 2016

.

創建者 Walter V

•Jun 28, 2020

The key concepts of linear regression are explain really well, without heavy mathematical explanation, that is good, because the main concepts are what it important.

The project at the end of the course is REALLY good, you can learn a lot from the analysis and investigation you need to do on it, it took me around 30 hours to really understand and complete (a full time job of 1 week), which is really nice.

I give 4 stars to the course, because they don't dig very much in variables selection, specially with categorical variables, with are the ones i had an hard time during the project. Note: It was hard, because it was difficult, but in the process i learnt a lot of things investigating.

Besides this point, the course is really good to say: "I know the basics of linear regression, I know how to handle it in R", the topic of "Linear Regression and Modeling" is of course much, much more larger than what can be explained in 1 course.

創建者 Neeraj P

•Feb 08, 2017

First, this course will enable me to understand the quantitative part of a research. Additionally, this will help a student to understand the essence of performing such numerical calculations and will make us understand the relationship between different variables.

Secondly, this is the need of the hour and such numerical functions are used worldwide so, learning this course will help in almost every field be it 'Management' be it 'Social Sciences' or be it 'Human Behaviour'.

創建者 Veliko D

•Oct 20, 2019

The course is good and the material is presented clearly. The capstone project is very good and makes you really use all the knowledge obtained in the course and the pre-prequisite course Inferral Statistics. My only dissatisfaction is that the course was rather short: only 3 weeks of material and 1 capstone. Therefor it covered less material then I expected. For example, I expected logistic regression to be covered.

創建者 Saif U K

•Jul 20, 2016

An extremely good introductory course. A must for undergraduates. The style of teaching is fluid and you learn concepts step by step. For more advanced learners the only drawback I see is that this is, by default, an introductory course.But still for advanced learners it can be a great (and I really mean great) refresher.

創建者 Artur A B

•May 10, 2017

The material is very straightforward and gives a great introduction to multiple linear regression. My only reservation is the length of the course, which seems to be a bit shorter than other courses in the certification. Would love to have more material/in-depth exposure to components available to us in R.

創建者 Albert H

•Jul 20, 2020

It's a nice overview of linear regression but I feel like there needs to be more time spent on model selection processes, collinearity/confounding/intermediate variables, and interaction terms. It's super important for accurate model building for research purposes.

創建者 Aaradhya G

•Jan 07, 2020

Again, Dr. Mine Cetinkaya Rundel is amazing. However, linear regression is a vast topic, and maybe another week could have been better. But nonetheless, the concepts explained herein are crystal clear, succinct, and taught in an engaging manner.

創建者 Sean T

•Jul 04, 2018

Really enjoyed this course! It teaches you the theory you need to understand how a linear regression model works, how to check that your model fulfils certain conditions so that it is valid, and how to build and implement your model in practice!

創建者 Richard N B A

•Nov 09, 2016

Great introduction to linear regression. Nice, clean R tutorials via the labs. The lectures do become a little monotonous, but there there are linked readings in a nice, open-source textbook if reading suits you better than listening.

創建者 Tomasz J

•Oct 15, 2017

Very good and gentle introduction to linear regression. The final assignment however uses dataset which is very risky to use with linear regression (not all conditions were met in all the assignments I rated!). This is confusing.

創建者 Aditya V

•Apr 26, 2020

A great course on regression. Though some topics weren't taught in the lecture but they can be easily covered using the links provided in the course. Additionally, a more detailed lecture on diagnostics plot can be useful.

創建者 Duane S

•Mar 30, 2017

This course provides a very good introduction to basic linear regression, including simple multiple linear regression, model building and interpretation, model diagnostics, and application in R.

創建者 Erik B

•Feb 26, 2017

Good, but a little "smaller" than the Inferential statistics course (which is very complete). I would have liked to also learn Logistics regression, which I now have to learn elsewhere.

創建者 Allah D N

•Dec 12, 2018

Files for this course were broken and I faced a lot of trouble to find good one. This course may be made more comprehensive and not assuming that reader have also understanding.

創建者 Charles G

•Jan 20, 2018

Good but I felt some gaps in the material made it difficult to learn. Also, the quiz questions are focused on attention to detail "gotcha" questions. This can be frustrating.

創建者 Aydar A

•Dec 20, 2017

Nice course. The downside is that it only explains interpretation of linear regression, but not enough details about how linear regression is performed from math point of view.

創建者 Jessye M

•Jan 13, 2017

This course was good. However, compared to the other courses in the specialisation had less content. I would have liked to have videos on logistic regression as well.

創建者 冯允鹏

•Nov 27, 2016

Compared to the Course 2 Statistic inference, this session seems to be a little be informal and rush. But still learn a lot from the conception of linear regression!

創建者 Christian A

•Apr 25, 2018

Really good course as the previous ones in this specialization. Could have included something more on checking for collinearity with categorical variables.

創建者 Dgo D

•Mar 30, 2017

It was a really good introduction to Linear Model, I recommend this course to all people who wants to learn more about statistical analysis

創建者 Ana C

•Oct 30, 2016

Excellent Course. Mine, the teacher is a great great teacher. The mentors help a lot.

Technical parts, coursera platform should work better

創建者 Janice H

•Jun 05, 2020

Lecture explanations are fantastic as are slides. Pace is appropriate. R information is a little sketchy but manageable with diligence.

創建者 Nathan H

•Dec 19, 2018

Very informative for an introduction. Wish it was longer and more mathematical, but there are other courses on Coursera for that.

創建者 Tony G

•Jan 29, 2017

Good overview of regression modeling. Would have liked to see more on logistic regression. But that's ok, can read it on my own.

- Finding Purpose & Meaning in Life
- Understanding Medical Research
- Japanese for Beginners
- Introduction to Cloud Computing
- Foundations of Mindfulness
- Fundamentals of Finance
- 機器學習
- 使用 SAS Viya 進行機器學習
- 幸福科學
- Covid-19 Contact Tracing
- 適用於所有人的人工智能課程
- 金融市場
- 心理學導論
- Getting Started with AWS
- International Marketing
- C++
- Predictive Analytics & Data Mining
- UCSD Learning How to Learn
- Michigan Programming for Everybody
- JHU R Programming
- Google CBRS CPI Training

- Natural Language Processing (NLP)
- AI for Medicine
- Good with Words: Writing & Editing
- Infections Disease Modeling
- The Pronounciation of American English
- Software Testing Automation
- 深度學習
- 零基礎 Python 入門
- 數據科學
- 商務基礎
- Excel 辦公技能
- Data Science with Python
- Finance for Everyone
- Communication Skills for Engineers
- Sales Training
- 職業品牌管理職業生涯品牌管理
- Wharton Business Analytics
- Penn Positive Psychology
- Washington Machine Learning
- CalArts Graphic Design

- 專業證書
- MasterTrack 證書
- Google IT 支持
- IBM 數據科學
- Google Cloud Data Engineering
- IBM Applied AI
- Google Cloud Architecture
- IBM Cybersecurity Analyst
- Google IT Automation with Python
- IBM z/OS Mainframe Practitioner
- UCI Applied Project Management
- Instructional Design Certificate
- Construction Engineering and Management Certificate
- Big Data Certificate
- Machine Learning for Analytics Certificate
- Innovation Management & Entrepreneurship Certificate
- Sustainabaility and Development Certificate
- Social Work Certificate
- AI and Machine Learning Certificate
- Spatial Data Analysis and Visualization Certificate

- Computer Science Degrees
- Business Degrees
- 公共衛生學位
- Data Science Degrees
- 學士學位
- 計算機科學學士
- MS Electrical Engineering
- Bachelor Completion Degree
- MS Management
- MS Computer Science
- MPH
- Accounting Master's Degree
- MCIT
- MBA Online
- 數據科學應用碩士
- Global MBA
- Master's of Innovation & Entrepreneurship
- MCS Data Science
- Master's in Computer Science
- 公共健康碩士