關於此 專項課程

100% 在線課程

立即開始,按照自己的計劃學習。

靈活的計劃

設置並保持靈活的截止日期。

初級

High school-level algebra

完成時間大約為2 個月

建議 8 小時/週

英語(English)

字幕:英語(English)...

您將學到的內容有

  • Check

    Create and interpret data visualizations using the Python programming language and associated packages & libraries

  • Check

    Apply and interpret inferential procedures when analyzing real data

  • Check

    Apply statistical modeling techniques to data (ie. linear and logistic regression, linear models, multilevel models, Bayesian inference techniques)

  • Check

    Understand importance of connecting research questions to data analysis methods.

您將獲得的技能

Python ProgrammingData Visualization (DataViz)Statistical ModelStatistical inference methods

100% 在線課程

立即開始,按照自己的計劃學習。

靈活的計劃

設置並保持靈活的截止日期。

初級

High school-level algebra

完成時間大約為2 個月

建議 8 小時/週

英語(English)

字幕:英語(English)...

專項課程 的運作方式

加入課程

Coursera 專項課程是幫助您掌握一門技能的一系列課程。若要開始學習,請直接註冊專項課程,或預覽專項課程並選擇您要首先開始學習的課程。當您訂閱專項課程的部分課程時,您將自動訂閱整個專項課程。您可以只完成一門課程,您可以隨時暫停學習或結束訂閱。訪問您的學生面板,跟踪您的課程註冊情況和進度。

實踐項目

每個專項課程都包括實踐項目。您需要成功完成這個(些)項目才能完成專項課程並獲得證書。如果專項課程中包括單獨的實踐項目課程,則需要在開始之前完成其他所有課程。

獲得證書

在結束每門課程並完成實踐項目之後,您會獲得一個證書,您可以向您的潛在雇主展示該證書並在您的職業社交網絡中分享。

how it works

此專項課程包含 3 門課程

課程1

Understanding and Visualizing Data with Python

4.5
59 個評分
18 個審閱
In this course, learners will be introduced to the field of statistics, including where data come from, study design, data management, and exploring and visualizing data. Learners will identify different types of data, and learn how to visualize, analyze, and interpret summaries for both univariate and multivariate data. Learners will also be introduced to the differences between probability and non-probability sampling from larger populations, the idea of how sample estimates vary, and how inferences can be made about larger populations based on probability sampling. At the end of each week, learners will apply the statistical concepts they’ve learned using Python within the course environment. During these lab-based sessions, learners will discover the different uses of Python as a tool, including the Numpy, Pandas, Statsmodels, Matplotlib, and Seaborn libraries. Tutorial videos are provided to walk learners through the creation of visualizations and data management, all within Python. This course utilizes the Jupyter Notebook environment within Coursera....
課程2

Inferential Statistical Analysis with Python

3.4
19 個評分
9 個審閱
In this course, we will explore basic principles behind using data for estimation and for assessing theories. We will analyze both categorical data and quantitative data, starting with one population techniques and expanding to handle comparisons of two populations. We will learn how to construct confidence intervals. We will also use sample data to assess whether or not a theory about the value of a parameter is consistent with the data. A major focus will be on interpreting inferential results appropriately. At the end of each week, learners will apply what they’ve learned using Python within the course environment. During these lab-based sessions, learners will work through tutorials focusing on specific case studies to help solidify the week’s statistical concepts, which will include further deep dives into Python libraries including Statsmodels, Pandas, and Seaborn. This course utilizes the Jupyter Notebook environment within Coursera....
課程3

Fitting Statistical Models to Data with Python

4.1
11 個評分
6 個審閱
In this course, we will expand our exploration of statistical inference techniques by focusing on the science and art of fitting statistical models to data. We will build on the concepts presented in the Statistical Inference course (Course 2) to emphasize the importance of connecting research questions to our data analysis methods. We will also focus on various modeling objectives, including making inference about relationships between variables and generating predictions for future observations. This course will introduce and explore various statistical modeling techniques, including linear regression, logistic regression, generalized linear models, hierarchical and mixed effects (or multilevel) models, and Bayesian inference techniques. All techniques will be illustrated using a variety of real data sets, and the course will emphasize different modeling approaches for different types of data sets, depending on the study design underlying the data (referring back to Course 1, Understanding and Visualizing Data with Python). During these lab-based sessions, learners will work through tutorials focusing on specific case studies to help solidify the week’s statistical concepts, which will include further deep dives into Python libraries including Statsmodels, Pandas, and Seaborn. This course utilizes the Jupyter Notebook environment within Coursera....

講師

Avatar

Brenda Gunderson

Lecturer IV and Research Fellow
Department of Statistics
Avatar

Brady T. West

Research Associate Professor
Institute for Social Research
Avatar

Kerby Shedden

Professor
Department of Statistics

關於 密歇根大学

The mission of the University of Michigan is to serve the people of Michigan and the world through preeminence in creating, communicating, preserving and applying knowledge, art, and academic values, and in developing leaders and citizens who will challenge the present and enrich the future....

常見問題

  • 可以!点击您感兴趣的课程卡开始注册即可。注册并完成课程后,您可以获得可共享的证书,或者您也可以旁听该课程免费查看课程资料。如果您订阅的课程是某专项课程的一部分,系统会自动为您订阅完整的专项课程。访问您的学生面板,跟踪您的进度。

  • 此课程完全在线学习,无需到教室现场上课。您可以通过网络或移动设备随时随地访问课程视频、阅读材料和作业。

  • This specialization is made up of three courses, each with four weeks/modules. Each week in a course requires a commitment of roughly 3-6 hours, which will vary by learner.

  • High school-level algebra is the only background knowledge mandatory for the first course in the series. A basic Python and/or coding background is recommended.

  • It is definitely recommended to take this specialization in order.

  • You will not earn University credit for completing this specialization.

  • Upon completion of all courses in this specialization, you will have a solid grasp of statistical analysis and will be able to conduct analyses using the Python programming language. You'll be able to create data visualizations in Python, as well as interpret and explain them. You will be able to utilize data for estimation and assessing theories, interpretation of inferential results, and you will be able to apply more advanced statistical modeling procedures.

還有其他問題嗎?請訪問 學生幫助中心