- Applied Machine Learning
- Machine Learning Concepts
- Machine Learning
- Feature Engineering
- Tensorflow
- 1.96
- Values Modes
- A Priori And A Posteriori
- Critical Value
Machine Learning with TensorFlow on Google Cloud em Português Brasileiro 專項課程
Aprenda sobre o AM com o Google Cloud. Experimentos práticos com AM em todas as etapas.
提供方
您將獲得的技能
關於此 專項課程
應用的學習項目
Esta especialização oferece laboratórios práticos por meio da plataforma do Qwiklabs.
Com esse treinamento prático, você poderá aplicar tudo o que aprendeu nas palestras em vídeo. Os projetos incluirão tópicos como produtos do Google Cloud Platform que são usados e configurados no Qwiklabs. Você ganhará experiência prática com os conceitos abordados nos módulos.
需要一些相關領域經驗。需要一些相關經驗。
需要一些相關領域經驗。需要一些相關經驗。
專項課程的運作方式
加入課程
Coursera 專項課程是幫助您掌握一門技能的一系列課程。若要開始學習,請直接註冊專項課程,或預覽專項課程並選擇您要首先開始學習的課程。當您訂閱專項課程的部分課程時,您將自動訂閱整個專項課程。您可以只完成一門課程,您可以隨時暫停學習或結束訂閱。訪問您的學生面板,跟踪您的課程註冊情況和進度。
實踐項目
每個專項課程都包括實踐項目。您需要成功完成這個(些)項目才能完成專項課程並獲得證書。如果專項課程中包括單獨的實踐項目課程,則需要在開始之前完成其他所有課程。
獲得證書
在結束每門課程並完成實踐項目之後,您會獲得一個證書,您可以向您的潛在雇主展示該證書並在您的職業社交網絡中分享。

此專項課程包含 5 門課程
How Google does Machine Learning em Português Brasileiro
"O que é machine learning e que tipos de problemas ele pode resolver? A abordagem de machine learning do Google é um pouco diferente. Ela se concentra na lógica, e não apenas nos dados. Vamos discutir por que essa abordagem é útil para os cientistas de dados durante a criação de um pipeline de modelos de machine learning.
Launching into Machine Learning em Português Brasileiro
Começando pela história do machine learning, vamos discutir por que as redes neurais hoje funcionam com vários problemas de ciência de dados. Depois vamos definir um problema de aprendizado supervisionado e descobrir uma boa solução usando o gradiente descendente. Isso envolve criar conjuntos de dados que permitem generalização. Vamos falar sobre os métodos que devemos usar para fazer isso de modo repetível e que viabilize a experimentação.
Intro to TensorFlow em Português Brasileiro
O objetivo deste curso é aproveitar a flexibilidade e a facilidade de uso do TensorFlow 2.x e do Keras para criar, treinar e implantar modelos de machine learning. Você aprenderá sobre a hierarquia da API TensorFlow 2.x e conhecerá os principais componentes do TensorFlow nos exercícios práticos. Mostraremos como trabalhar com conjuntos de dados e colunas de atributos. Você aprenderá a projetar e criar um pipeline de entrada de dados do TensorFlow 2.x. Você terá uma experiência prática com o carregamento de dados CSV, matrizes numpy, dados de texto e imagens usando o tf.Data.Dataset e com a criação de colunas de atributos numéricas, categóricas, em bucket e com hash.
Feature Engineering em Português Brasileiro
Quer saber como melhorar a acurácia dos modelos de ML e quais colunas de dados são os atributos mais úteis? Neste curso Feature Engineering, abordaremos os atributos bons e ruins, bem como o pré-processamento e a transformação deles para otimizar os modelos.
提供方

Google 云端平台
We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success.
常見問題
退款政策是如何规定的?
我可以只注册一门课程吗?
有助学金吗?
我可以免费学习课程吗?
此课程是 100% 在线学习吗?是否需要现场参加课程?
完成专项课程后我会获得大学学分吗?
還有其他問題嗎?請訪問 學生幫助中心。