- Manage Azure resources for machine learning
- Deploy and operationalize machine learning solutions
- Run experiments and train models
- Implement responsible machine learning
- Machine Learning
- Supervised Learning
- Regression Analysis
- regression
- Work with Data and Compute in Azure Machine Learning
- Use the Azure Machine Learning SDK to train a model
- Select models and protect sensitive data
- Orchestrate pipelines and deploy real-time machine learning services with Azure Machine Learning
Microsoft Azure Data Scientist Associate - DP-100 Test Prep 專項課程
在数据科学领域工作. Apply data science and machine learning to implement and run machine learning workloads on Azure.
提供方
您將學到的內容有
Manage Azure resources for machine learning
Run experiments and train models
Deploy and operationalize ethical machine learning solutions
How to plan and create a working environment for data science workloads on Azure and how to run data experiments and train predictive models.
您將獲得的技能

關於此 專項課程
應用的學習項目
Learners will engage in interactive exercises throughout this program that offers opportunities to practice and implement what they are learning. They will work directly in the Azure Portal and use the Microsoft Learn Sandbox. This is a free environment that allows learners to explore Microsoft Azure and get hands-on with live Microsoft Azure resources and services. For example, when you learn about training a deep neural network; you will work in a temporary Azure environment called the Sandbox. The beauty about this is that you will be working with real technology but in a controlled environment, which allows you to apply what you learn, and at your own pace. You will need a Microsoft account. If you don't have one, you can create one for free. The Learn Sandbox allows free, fixed-time access to a cloud subscription with no credit card required. Learners can safely explore, create, and manage resources without the fear of incurring costs or "breaking production".
Some experience in training machine learning models with Python and open-source frameworks like Scikit-Learn, PyTorch, and Tensorflow.
Some experience in training machine learning models with Python and open-source frameworks like Scikit-Learn, PyTorch, and Tensorflow.
專項課程的運作方式
加入課程
Coursera 專項課程是幫助您掌握一門技能的一系列課程。若要開始學習,請直接註冊專項課程,或預覽專項課程並選擇您要首先開始學習的課程。當您訂閱專項課程的部分課程時,您將自動訂閱整個專項課程。您可以只完成一門課程,您可以隨時暫停學習或結束訂閱。訪問您的學生面板,跟踪您的課程註冊情況和進度。
實踐項目
每個專項課程都包括實踐項目。您需要成功完成這個(些)項目才能完成專項課程並獲得證書。如果專項課程中包括單獨的實踐項目課程,則需要在開始之前完成其他所有課程。
獲得證書
在結束每門課程並完成實踐項目之後,您會獲得一個證書,您可以向您的潛在雇主展示該證書並在您的職業社交網絡中分享。

此專項課程包含 5 門課程
Create Machine Learning Models in Microsoft Azure
Machine learning is the foundation for predictive modeling and artificial intelligence. If you want to learn about both the underlying concepts and how to get into building models with the most common machine learning tools this path is for you. In this course, you will learn the core principles of machine learning and how to use common tools and frameworks to train, evaluate, and use machine learning models.
Microsoft Azure Machine Learning for Data Scientists
Machine learning is at the core of artificial intelligence, and many modern applications and services depend on predictive machine learning models. Training a machine learning model is an iterative process that requires time and compute resources. Automated machine learning can help make it easier. In this course, you will learn how to use Azure Machine Learning to create and publish models without writing code.
Build and Operate Machine Learning Solutions with Azure
Azure Machine Learning is a cloud platform for training, deploying, managing, and monitoring machine learning models. In this course, you will learn how to use the Azure Machine Learning Python SDK to create and manage enterprise-ready ML solutions.
Perform data science with Azure Databricks
In this course, you will learn how to harness the power of Apache Spark and powerful clusters running on the Azure Databricks platform to run data science workloads in the cloud.
提供方

Microsoft
Our goal at Microsoft is to empower every individual and organization on the planet to achieve more.
常見問題
退款政策是如何规定的?
我可以只注册一门课程吗?
有助学金吗?
我可以免费学习课程吗?
此课程是 100% 在线学习吗?是否需要现场参加课程?
完成专项课程需要多长时间?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
完成专项课程后我会获得大学学分吗?
What will I be able to do upon completing the Specialization?
還有其他問題嗎?請訪問 學生幫助中心。