關於此 專項課程
100% 在線課程

100% 在線課程

立即開始,按照自己的計劃學習。
靈活的計劃

靈活的計劃

設置並保持靈活的截止日期。
中級

中級

完成時間(小時)

完成時間大約為4 個月

建議 3 小時/週
可選語言

俄語(Russian)

字幕:俄語(Russian)...
100% 在線課程

100% 在線課程

立即開始,按照自己的計劃學習。
靈活的計劃

靈活的計劃

設置並保持靈活的截止日期。
中級

中級

完成時間(小時)

完成時間大約為4 個月

建議 3 小時/週
可選語言

俄語(Russian)

字幕:俄語(Russian)...

專項課程 的運作方式

加入課程

Coursera 專項課程是幫助您掌握一門技能的一系列課程。若要開始學習,請直接註冊專項課程,或預覽專項課程並選擇您要首先開始學習的課程。當您訂閱專項課程的部分課程時,您將自動訂閱整個專項課程。您可以只完成一門課程,您可以隨時暫停學習或結束訂閱。訪問您的學生面板,跟踪您的課程註冊情況和進度。

實踐項目

每個專項課程都包括實踐項目。您需要成功完成這個(些)項目才能完成專項課程並獲得證書。如果專項課程中包括單獨的實踐項目課程,則需要在開始之前完成其他所有課程。

獲得證書

在結束每門課程並完成實踐項目之後,您會獲得一個證書,您可以向您的潛在雇主展示該證書並在您的職業社交網絡中分享。

how it works

此專項課程包含 4 門課程

課程1

Введение в данные

4.7
75 個評分
12 個審閱
Этот курс - первый в специализации "Анализ данных". Курс будет особенно полезен тем, кто имеет небольшой опыт работы с данными, или хочет освежить знания по теории вероятностей, математической статистике и типах данных. Сначала мы вспомним основы теории вероятностей и поговорим о случайных величинах и их свойствах, об основных распределениях случайных величин. Затем перейдем к основным характеристикам распределений: мерам центра и мерам вариативности. Далее обсудим основные типы шкал измерения признаков, а также основные ограничения, которые тип шкалы накладывает на применимые методы анализа данных. Третья неделя курса посвящена графическому анализу данных и способам визуализации распределений, индивидуальных или совместных. Завершающий модуль курса посвящен выборкам и способам их формирования, а также принципам и инструментам работы с пропущенными и неопределенными значениями. Вы сможете применить полученные знания, выполнив небольшой проект на реальных данных, предоставленных компанией 2GIS. Присоединяйтесь!...
課程2

Исследование статистических взаимосвязей

4.5
34 個評分
4 個審閱
Курс рассматривает способы и инструменты исследования статистических взаимосвязей между признаками. Вы научитесь оценивать, связаны ли признаки, а также делать обоснованные выводы о том, значима ли эта связь статистически. Связаны ли богатство и счастье, как связана потребительская активность людей с днем недели, способствует ли наличие аккаунта в социальных сетях популярности корпоративного сайта? На вопросы такого рода вы сможете ответить, пройдя этот курс. В первом модуле курса мы поговорим о статистических гипотезах, о способах их проверки и об основных статистических критериях, которые для этого разработаны. После этого мы рассмотрим практические инструменты выявления статистических взаимосвязей признаков, измеренных разными типами шкал, а также способы оценки значимости этих связей. Мы поговорим об основных коэффициентах взаимосвязи признаков, о том, как правильно выбрать коэффициент для решения конкретной задачи и покажем, как рассчитывать коэффициенты связи в статистических пакетах. В заключении мы подробно рассмотрим модель линейной регрессии, которая позволяет не только выявлять взаимосвязи между признаками, но и строить прогноз, и попрактикуемся в её построении....
課程3

Сравнение и создание групп

4.2
18 個評分
3 個審閱
Курс посвящен статистическому сравнению характеристик групп и категорий. В первой части курса мы рассказываем о параметрических и непараметрических тестах сравнения средних и распределений, какие возможности и ограничения связаны с разными методами сравнения групп, говорим о сравнении связанных и несвязанных выборок. Различаются ли регионы (или аудитории) по доходу или возрасту? Как отличается пользовательская активность в разные времена года? Случайны различия между группами или закономерны? Курс научит искать ответы на такие вопросы. Вторая половина курсов посвящена выделению групп на основе эмпирических данных. Есть ли структура в данных? Можно ли говорить о том, что люди, компании или университеты группируются в отличительные, узнаваемые классы? Как найти и охарактеризовать такие группы? Мы покажем основные алгоритмы кластеризации, которые позволяют решать такие задачи. В практических видео курса мы покажем реализацию основных инструментов сравнения и выделения групп, а также предложим практические задачи и задания для отработки полученных навыков....
課程4

Тренды и классификации

4.4
19 個評分
3 個審閱
В этом курсе мы поговорим о трендах и классификаторах. Анализ трендов помогает ответить на вопросы вроде: растут ли продажи, увеличивается ли количество пользователей сервиса? Если есть рост, то случайность это или закономерность? Есть ли в данных сезонные колебания? Как выделить тренд и как объяснить его? Также мы поговорим о факторном анализе, который позволяет найти скрытую переменную (или переменные), направляющие проявление множества видимых признаков. Как найти такие скрытые переменные и понять, что за ними стоит? В заключительной части курса поговорим о классификаторах, применение которых решает задачи отнесения объектов к тому или иному классу с определенной вероятностью, а также позволяет прогнозировать попадание нового объекта в определенный класс. Как предсказать исход события, зная основные характеристики действующего лица? Закончит ли слушатель курс, отдаст ли заемщик кредит? Как оценить точность прогноза и минимизировать ошибки? Мы разберемся с устройством обозначенных методов анализа данных и попрактикуемся в их применении....

講師

Avatar

Ольга Ечевская

доцент, кандидат социологических наук
Кафедра общей социологии ЭФ НГУ
Avatar

Наталья Галанова

Специалист по анализу данных
Компания 2GIS
Avatar

Виктор Дёмин

Специалист по анализу данных, кандидат технических наук
Компания 2GIS

行業合作夥伴

Industry Partner Logo #0

關於 Novosibirsk State University

Novosibirsk State University (NSU) is a research university located in Novosibirsk Akademgorodok, the world-famous scientific center in Siberia. 80% of NSU teachers are active researchers affiliated with the Russian Academy of Sciences; therefore education is closely linked to world-class science: our students get first-hand knowledge about scientific discoveries before they are published. Nearly 6000 students (including international students from 37 countries) are enrolled at undergraduate and graduate programs offered by 13 departments. The leading areas of NSU expertise are natural sciences, life sciences, physics, math, IT, and more....

常見問題

  • 可以!点击您感兴趣的课程卡开始注册即可。注册并完成课程后,您可以获得可共享的证书,或者您也可以旁听该课程免费查看课程资料。如果您订阅的课程是某专项课程的一部分,系统会自动为您订阅完整的专项课程。访问您的学生面板,跟踪您的进度。

  • 此课程完全在线学习,无需到教室现场上课。您可以通过网络或移动设备随时随地访问课程视频、阅读材料和作业。

  • 此专项课程不提供大学学分,但部分大学可能会选择接受专项课程证书作为学分。查看您的合作院校了解详情。

  • Пройдя специализацию полностью, вы освоите набор основных навыков статистического анализа данных и сможете решать аналитические задачи разного уровня сложности: от описательных статистик и графиков до построения классификаций и прогнозов и оценки качества построенных моделей. Также вы научитесь использовать среды анализа данных, SPSS и R, для обработки и анализа данных.

  • Каждый курс специализации состоит из четырех недель обучения и одной недели практических заданий (выполнение проекта на реальных данных и оценка работ сокурсников). Таким образом, прохождение всей специализации займет в среднем от 3 до 5 месяцев в зависимости от мотивации, уровня подготовки и темпа обучения.

  • Базовые знания математики (знания в рамках школьной программы). Знакомство с основами теории вероятностей и математической статистики не обязательно, но облегчит прохождение специализации.

  • Специализация разрабатывалась так, что в порядке курсов есть логика. Первый курс задает основы для прохождения всех остальных курсов. Каждый следующий курс посвящен отдельным классам задач, сложность которых увеличивается от 2 к 4 курсу. Проходить курсы в случайном порядке можно, но только при наличии предварительной подготовки.

還有其他問題嗎?請訪問 學生幫助中心