Transfer Learning for Food Classification

4.6
51 個評分
提供方
Coursera Project Network
3,548 人已註冊
在此指導項目中,您將:

Understand the theory and intuition behind Convolutional Neural Networks (CNNs) and transfer learning

Build and train a Deep Learning Model using Pre-Trained InceptionResnetV2

Assess the performance of trained CNN using various Key performance indicators

Clock2 hours
Beginner初級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

In this hands-on project, we will train a deep learning model to predict the type of food and then fine tune the model to improve its performance. This project could be practically applied in food industry to detect the type and quality of food. In this 2-hours long project-based course, you will be able to: - Understand the theory and intuition behind Convolutional Neural Networks (CNNs). - Understand the theory and intuition behind transfer learning. - Import Key libraries, dataset and visualize images. - Perform data augmentation. - Build a Deep Learning Model using Pre-Trained InceptionResnetV2. - Compile and fit Deep Learning model to training data. - Assess the performance of trained CNN and ensure its generalization using various KPIs.

您要培養的技能

Deep LearningMachine LearningPython ProgrammingArtificial Intelligence(AI)Computer Vision

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Understand the Problem Statement and Business Case

  2. Import Libraries and Datasets

  3. Perform Data Exploration and Visualization

  4. Perform Image Augmentation and Create Data Generator

  5. Understand the theory and intuition behind Transfer Learning

  6. Build Deep Learning model using Pre-trained Inception ResNet

  7. Compile and Train Deep Learning Model

  8. Fine Tune the Trained Model

  9. Assess the Performance of the Trained Model

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心