Project: Traffic Sign Classification Using Deep Learning in Python/Keras

提供方
Rhyme
在此指導項目中,您將:

Understand the theory and intuition behind Convolutional Neural Networks (CNNs).

Build and train a Convolutional Neural Network using Keras with Tensorflow 2.0 as a backend.

Assess the performance of trained CNN and ensure its generalization using various Key performance indicators.

Clock2 hours
Intermediate中級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English) + subtitles
Laptop不適用於移動設備

In this 1-hour long project-based course, you will be able to: - Understand the theory and intuition behind Convolutional Neural Networks (CNNs). - Import Key libraries, dataset and visualize images. - Perform image normalization and convert from color-scaled to gray-scaled images. - Build a Convolutional Neural Network using Keras with Tensorflow 2.0 as a backend. - Compile and fit Deep Learning model to training data. - Assess the performance of trained CNN and ensure its generalization using various KPIs. - Improve network performance using regularization techniques such as dropout.

您要培養的技能

Deep LearningArtificial Intelligence (AI)Machine LearningPython ProgrammingComputer Vision

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的講師將指導您完成每個步驟:

  1. Task 1: Project overview

  2. Task 2: Import libraries and datasets

  3. Task 3: Perform image visualization

  4. Task 4: Convert images to gray-scale and perform normalization

  5. Task 5: Understand the theory and intuition behind Convolutional Neural Networks

  6. Task 6: Build deep learning model

  7. Task 7: Compile and train deep learning model

  8. Task 8: Assess trained model performance

指導項目工作原理

您的工作空間就是瀏覽器中的虛擬桌面,無需下載。

在分屏視頻中,您的講師會為您提供分步指導

常見問題

常見問題

  • 購買項目後,您將獲得完成項目所需的一切內容,包括通過 Web 瀏覽器訪問云桌面工作空間,其中包含您需要了解的文件和軟件,以及特定領域的專家提供的分步視頻說明。

  • 因為您的工作空間包含適合筆記本電腦或台式計算機使用的雲桌面,所以項目不在移動設備上使用。

  • 項目講師是特定領域的專家,他們在項目的技能、工具或領域上都很有經驗,並且熱衷於分享自己的知識以影響全球數百萬的學生。

  • 您可以從項目中下載並保留您創建的任何文件。為此,您可以在訪問云桌面時使用‘文件瀏覽器’功能。

  • 項目沒有助學金。

  • 您不需要任何前期經驗即可開始項目。講師將逐步指導您完成項目。

  • 是,您可以在瀏覽器的雲桌面中獲得完成項目所需的一切。

  • 您可以通過直接在瀏覽器中的分屏環境中完成項目來進行學習。在屏幕的左側,您將在工作空間中完成任務。在屏幕的右側,您將看到有講師逐步指導您完成項目。