Traffic Sign Classification Using Deep Learning in Python/Keras

4.6
314 個評分
提供方
Coursera Project Network
9,354 人已註冊
在此指導項目中,您將:

Understand the theory and intuition behind Convolutional Neural Networks (CNNs).

Build and train a Convolutional Neural Network using Keras with Tensorflow 2.0 as a backend.

Assess the performance of trained CNN and ensure its generalization using various Key performance indicators.

Clock2 hours
Intermediate中級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

In this 1-hour long project-based course, you will be able to: - Understand the theory and intuition behind Convolutional Neural Networks (CNNs). - Import Key libraries, dataset and visualize images. - Perform image normalization and convert from color-scaled to gray-scaled images. - Build a Convolutional Neural Network using Keras with Tensorflow 2.0 as a backend. - Compile and fit Deep Learning model to training data. - Assess the performance of trained CNN and ensure its generalization using various KPIs. - Improve network performance using regularization techniques such as dropout.

您要培養的技能

Deep LearningArtificial Intelligence (AI)Machine LearningPython ProgrammingComputer Vision

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Task 1: Project overview

  2. Task 2: Import libraries and datasets

  3. Task 3: Perform image visualization

  4. Task 4: Convert images to gray-scale and perform normalization

  5. Task 5: Understand the theory and intuition behind Convolutional Neural Networks

  6. Task 6: Build deep learning model

  7. Task 7: Compile and train deep learning model

  8. Task 8: Assess trained model performance

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

講師

審閱

來自TRAFFIC SIGN CLASSIFICATION USING DEEP LEARNING IN PYTHON/KERAS的熱門評論

查看所有評論

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心