Sentimental Analysis on COVID-19 Tweets using python

4.6
35 個評分
提供方
Coursera Project Network
在此指導項目中,您將:

Learn how to Preprocess text data for Sentimental Analysis

Learn how to Label text data with positive, negative and neutral sentiments

Learn to visualize the result of sentiment Analysis

Clock1 hour
Intermediate中級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

By the end of this project you will learn how to preprocess your text data for sentimental analysis. So in this project we are going to use a Dataset consisting of data related to the tweets from the 24th of July, 2020 to the 30th of August 2020 with COVID19 hashtags. We are going to use python to apply sentimental analysis on the tweets to see people's reactions to the pandemic during the mentioned period. We are going to label the tweets as Positive, Negative, and neutral. After that, we are going to visualize the result to see the people's reactions on Twitter. Note: This project works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培養的技能

  • lambda
  • Python Programming
  • Plotly
  • Seaborn
  • Sentimental Analysis

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. importing our dataset

  2. preprocess and prepare our text data for Sentimental Analysis

  3. visualizing most common words using a bar chart.

  4. using NLTK module to produce Polarity scores for each tweet

  5. visualizing the result of our analysis using line chart

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

審閱

來自SENTIMENTAL ANALYSIS ON COVID-19 TWEETS USING PYTHON的熱門評論

查看所有評論

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心