Using TensorFlow with Amazon Sagemaker

4.7
69 個評分
提供方
Coursera Project Network
5,158 人已註冊
在此指導項目中,您將:

Prepare custom script for Sagemaker.

Train a TensorFlow model using Sagemaker.

Deploy a TensorFlow trained model using Sagemaker.

Clock2 hours
Advanced高級設置
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

Please note: You will need an AWS account to complete this course. Your AWS account will be charged as per your usage. Please make sure that you are able to access Sagemaker within your AWS account. If your AWS account is new, you may need to ask AWS support for access to certain resources. You should be familiar with python programming, and AWS before starting this hands on project. We use a Sagemaker P type instance in this project, and if you don't have access to this instance type, please contact AWS support and request access. In this 2-hour long project-based course, you will learn how to train and deploy an image classifier created and trained with the TensorFlow framework within the Amazon Sagemaker ecosystem. Sagemaker provides a number of machine learning algorithms ready to be used for solving a number of tasks. However, it is possible to use Sagemaker for custom training scripts as well. We will use TensorFlow and Sagemaker's TensorFlow Estimator to create, train and deploy a model that will be able to classify images of dogs and cats from the popular Oxford IIIT Pet Dataset. Since this is a practical, project-based course, we will not dive in the theory behind deep learning based image classification, but will focus purely on training and deploying a model with Sagemaker and TensorFlow. You will also need to have some experience with Amazon Web Services (AWS). Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培養的技能

Deep Learningimage classificationMachine LearningsagemakerTensorflow

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Download the data

  2. Prepare the dataset

  3. Create the model

  4. Data generators

  5. Arguments

  6. Finalizing the training script

  7. Upload Dataset to S3

  8. TensorFlow Estimator

  9. Deploy the model

  10. Inference and Deleting Endpoint 

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

審閱

來自USING TENSORFLOW WITH AMAZON SAGEMAKER的熱門評論

查看所有評論

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心