Regresión logística con NumPy y Python

提供方
Coursera Project Network
在此指導項目中,您將:

Implementarás el algoritmo de descenso de gradientes desde cero

Realizarás una regresión logística con Numpy y Python

Crearás visualizaciones de datos con Matplotlib y Seaborn

Clock2 horas
Beginner初級
Cloud無需下載
Video分屏視頻
Comment Dots西班牙語(Spanish)
Laptop僅限桌面

Bienvenidos a este curso basado en un proyecto de regresión logística con Numpy y Python. En este proyecto, aprenderás uno de los conceptos bases del machine learning sin usar ninguna de las bibliotecas o librerías populares de machine learning como scikit-learn y statsmodels. El objetivo de este proyecto es que implementes por ti mismo toda la carpintería, incluyendo descenso de gradiente, función de costo, y regresión logística, que se utilizan en diversos algoritmos de aprendizaje, para que tengas una comprensión más profunda de los fundamentos. Para cuando complete este proyecto, podrá construir un modelo de regresión logística utilizando Python y Numpy, realizar análisis de datos exploratorios básicos, e implementar el descenso de gradientes desde cero. Este curso se ejecuta en la plataforma de proyectos prácticos de Coursera llamada Rhyme. En Rhyme, se realizan proyectos de forma práctica en el navegador. Tendrás acceso instantáneo a escritorios en la nube pre-configurados que contienen todo el software y los datos que necesitas para el proyecto. Todo ya está configurado directamente en tu navegador de Internet para que puedas concentrarte en el aprendizaje. Para este proyecto, obtendrás acceso instantáneo a un escritorio en la nube con Python, Jupyter, Numpy y Seaborn preinstalados.

您要培養的技能

  • Data Science
  • Machine Learning
  • Python Programming
  • classification
  • Numpy

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Introducción a Rhyme y al proyecto

  2. Importar el dataset y las librerías

  3. Visualización de los datos

  4. Definir la función logística de Sigmoid

  5. Calcular la función del costo y el gradiente

  6. Inicializar el costo y el gradiente

  7. Calcular el descenso del gradiente

  8. Trazar la convergencia de la función del costo

  9. Trazar el límite de decisión

  10. Realizar predicciones usando los valores optimizados

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心