Perform Real-Time Object Detection with YOLOv3

3.8
128 個評分
提供方
Coursera Project Network
2,971 人已註冊
在此指導項目中,您將:

Perform real-time object detection with YOLOv3

Use pre-trained models to perform real-time and passive inference with a GPU

Use OpenCV to manipulate video data and develop a command line application with Python for inference

Clock1.5 hours
Intermediate中級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

In this 1-hour long project-based course, you will perform real-time object detection with YOLOv3: a state-of-the-art, real-time object detection system. Specifically, you will detect objects with the YOLO system using pre-trained models on a GPU-enabled workstation. To apply YOLO to videos and save the corresponding labelled videos, you will build a custom command-line application in Python that employs a pre-trained model to detect, localize, and classify objects. It will use OpenCV to read the video streams, draw bounding boxes around detected objects, label the objects along with confidence scores, and save the labelled videos to disk. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Keras pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培養的技能

Deep LearningOpencvYOLOObject DetectionComputer Vision

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Introduction and Overview

  2. Explore the Dataset

  3. Setup Training and Validation Data Generators

  4. Create a Convolutional Neural Network (CNN) Model

  5. Train and Evaluate Model

  6. Save and Serialize Model as JSON String

  7. Create a Flask App to Serve Predictions

  8. Create a Model Class to Output Predictions

  9. Design an HTML Template for the Flask App

  10. Use Model to Recognize Facial Expressions in Videos

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

審閱

來自PERFORM REAL-TIME OBJECT DETECTION WITH YOLOV3的熱門評論

查看所有評論

常見問題

常見問題

  • 購買指導項目後,您將獲得完成指導項目所需的一切,包括通過Web 瀏覽器訪問云桌面工作空間,工作空間中包含您需要了解的文件和軟件,以及特定領域的專家提供的分步視頻說明。

  • 由於您的工作空間包含適合筆記本電腦或台式計算機使用的雲桌面,因此指導項目不在移動設備上提供。

  • 指導項目講師是特定領域的專家,他們在項目的技能、工具或領域方面經驗豐富,並且熱衷於分享自己的知識以影響全球數百萬的學生。

  • 您可以從指導項目中下載並保留您創建的任何文件。為此,您可以在訪問云桌面時使用‘文件瀏覽器’功能。

  • 指導項目不符合退款條件。 請查看我們完整的退款政策

  • 指導項目不提供助學金。

  • 指導項目不支持旁聽。

  • 您可在頁面頂部點按此指導項目的經驗級別,查看任何知識先決條件。對於指導項目的每個級別,您的講師會逐步為您提供指導。

  • 是,您可以在瀏覽器的雲桌面中獲得完成指導項目所需的一切。

  • 您可以直接在瀏覽器中於分屏環境下完成任務,以此從做中學。在屏幕的左側,您將在工作空間中完成任務。在屏幕的右側,您將看到有講師逐步指導您完成項目。

還有其他問題嗎?請訪問 學生幫助中心