Chevron Left
返回到 Fake News Detection with Machine Learning

學生對 Coursera Project Network 提供的 Fake News Detection with Machine Learning 的評價和反饋

4.6
202 個評分
34 條評論

課程概述

In this hands-on project, we will train a Bidirectional Neural Network and LSTM based deep learning model to detect fake news from a given news corpus. This project could be practically used by any media company to automatically predict whether the circulating news is fake or not. The process could be done automatically without having humans manually review thousands of news related articles. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

熱門審閱

SG
2020年10月23日

Instructor Ryan has taken a lot of efforts to explain the topics, Advanced concepts like RNNs and LSTMs are clearly explained. Loved it.

GM
2020年8月31日

Each thing explains in a very simple way. As mention beginner to intermediate level.

篩選依據:

1 - Fake News Detection with Machine Learning 的 25 個評論(共 34 個)

創建者 Asif-Uz-Zaman K S

2020年8月3日

Did not explain to me that much. There was codes but without the basic knowledge of programming it is very difficult.

創建者 Rayna V

2020年11月9日

instructions are good. but could not download dataset and code. would've been better if that was easily available.

創建者 Joe H

2021年4月10日

Great course! Very concise and provides everything needed to complete an LSTM model for fake news detection. Instructor does a great job of explaining concepts and guiding users through all the necessary coding. Some coding skills required but not much. Compute time for model training is very long if using external Jupyter Notebook to follow along.

創建者 Cathreen S P

2020年10月9日

Great course, not that long but probably you will learn something extraordinary. As a Journalism graduate it is quite unique to stumble into this course since Fake news nowadays are the new thread you need to be skeptical when it comes to fact checking.

創建者 Sanket G

2020年10月24日

Instructor Ryan has taken a lot of efforts to explain the topics, Advanced concepts like RNNs and LSTMs are clearly explained. Loved it.

創建者 Manish A

2020年9月17日

Very well explained.

創建者 Isabelle T

2020年9月27日

This is a follow along project. The instructor goes through the code, which is explained well. He doesn't go over the math so much. This project is enough to go and read into it further yourself and practice on your own projects.

創建者 Nandan P

2021年4月12日

Its an Awesome Guided Project if you really want to understand about basic machine learning project and also about Fake News Detection working. Also How RNN and LSTM differ is somewhat explained in this project.

創建者 Murtuza B

2020年10月4日

Thank you so much sir for creating the course. really enjoyed your insights and the explanations were very crisp and clear. Looking forward to get enrolled in one of the other courses or projects offered by you.

創建者 Ganesh s m

2020年9月1日

Each thing explains in a very simple way. As mention beginner to intermediate level.

創建者 Keith P

2020年10月27日

Excellent introduction for AI/ML tools in the detection and analysis of fake news.

創建者 Harsh K M

2020年11月3日

This guided project is good for practicing the theory involved in NLP and RNNs.

創建者 Zakhar N

2021年5月4日

Very useful project, the instructor is very clear in presenting information

創建者 Bruce B

2020年9月18日

Great project, very approachable. Touches on all the essentials!

創建者 Mani K

2020年8月14日

Great practice for important concepts in data science.

創建者 Sidharta P

2020年9月30日

Amazing Course ! Expand my knowledge about NLP

創建者 Fausto B D S T

2021年7月2日

Really fun project with amazing instructor.

創建者 K P H

2020年9月15日

It Provided Simple and easy explaination

創建者 Hammad Y

2021年3月15日

Great Course but advance course

創建者 Ashok K

2020年8月11日

Excellent hands on practicals

創建者 K V S 1

2021年6月27日

great explanation sir

創建者 Virendra G

2020年11月1日

Excellent course.

創建者 Charudatt M

2021年7月5日

Best course

創建者 Stud 2

2020年8月17日

very useful

創建者 Paindla N r

2020年11月22日

very good