Natural Language Processing for Stocks News Analysis

提供方
Coursera Project Network
在此指導項目中,您將:

Create a pipeline to remove stop-words, perform tokenization and padding

Understand the theory and intuition behind Recurrent Neural Networks and LSTM

Train the deep learning model and assess its performance

Clock2 hours
Beginner初級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

In this hands-on project, we will train a Long Short Term Memory (LSTM) deep learning model to perform stocks sentiment analysis. Natural language processing (NLP) works by converting words (text) into numbers, these numbers are then used to train an AI/ML model to make predictions. In this project, we will build a machine learning model to analyze thousands of Twitter tweets to predict people’s sentiment towards a particular company or stock. The algorithm could be used automatically understand the sentiment from public tweets, which could be used as a factor while making buy/sell decision of securities. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培養的技能

  • Python Programming
  • Machine Learning
  • Deep Learning
  • coding

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Task #1: Understand the Problem Statement and business case 

  2. Task #2: Import libraries and datasets and Perform Exploratory Data Analysis

  3. Task #3: Perform Data Cleaning (Remove Punctuations)

  4. Task #4: Perform Data Cleaning (Remove Stopwords)

  5. Task #5: Plot WordCloud

  6. Task #6: Visualize Cleaned Datasets

  7. Task #7: Prepare the data by tokenizing and padding

  8. Task #8: Understand the theory and intuition behind LSTM

  9. Task #9: Build and train the model

  10. Task #10: Assess trained model performance

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心