Malaria parasite detection using ensemble learning in Keras

提供方
Coursera Project Network
在此指導項目中,您將:

Transform image files into arrays and create datasets

Create and Train a CNN model in Keras

Clock2 hours
Intermediate中級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

In this 1-hour long project-based course, you will learn what ensemble learning is and how to implement is using python. You will create deep convolutional neural networks using the Keras library to predict the malaria parasite. You will learn various ways of assessing classification models. You will create an ensemble of deep convolutional neural networks and apply voting in order to combine the best predictions of your models. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培養的技能

  • Machine Learning
  • Python Programming
  • Ensemble Learning
  • python CV
  • Image Processing

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Load the cell image data

  2. Transform the image files into arrays and create the datasets

  3. Create a deep CNN

  4. Train and test the CNN

  5. Create the CNN models ensemble

  6. Fit the models in the ensemble and perform the prediction

  7. Apply hard voting to the ensemble

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心