Machine Learning Interpretable: interpretML y LIME

提供方
Coursera Project Network
在此指導項目中,您將:

Conocer los fundamentos de la interpretabilidad de modelos

Aplicar librerías para la interpretabilidad de modelos como: LIME e interpretML

Desarrollar modelos interpretables de Random Forest y Explainable Boosting Machine

Clock2 horas
Intermediate中級
Cloud無需下載
Video分屏視頻
Comment Dots西班牙語(Spanish)
Laptop僅限桌面

Este proyecto es un curso práctico y efectivo para aprender a generar modelos de Machine Learning interpretables. Se explican en profundidad diferentes técnicas de interpretabilidad de modelos como: interpretML y LIME que nos permitirá entender el porqué de las predicciones. Gracias a esto, aprenderás a entrenar modelos Glassbox que puedas entender el porqué de sus decisiones.

您要培養的技能

  • Machine Learning
  • interpretML
  • Explainable Machine Learning
  • LIME

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Introducción a los modelos de Machine Learning Interpretables

  2. LIME: Modelos localmente interpretables

  3. Programación de LIME

  4. InterpretML de Microsoft

  5. Programación de InterpretML

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心